结论 • DG 的近似非常粗糙;不适用于氢键、受阻旋转、柔性分子等。 • 隐式溶剂模型非常粗糙;忽略所有定向溶剂相互作用(氢键、盐桥等)。 • 溶剂熵(疏水效应等)被完全忽略。 • 该方法每次只对一个构象异构体有效,没有构象异构体采样 它居然有效,真是令人惊讶!(正如它在数千种出版物中所做的那样……)
GALLIUM 试验. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 推荐的输注前用药. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
在 IV 族单硫族化物中,层状 GeSe 因其各向异性、1.3 eV 直接带隙、铁电性、高迁移率和出色的环境稳定性而备受关注。电子、光电子和光伏应用依赖于合成方法的开发,这些方法可以产生大量具有可控尺寸和厚度的晶体薄片。在这里,我们展示了在低热预算下,在不同基底上通过金催化剂通过气相-液相-固相工艺生长单晶 GeSe 纳米带。纳米带结晶为层状结构,带轴沿着范德华层的扶手椅方向。纳米带的形态由催化剂驱动的快速纵向生长决定,同时通过边缘特定结合到基面而进行横向扩展。这种组合生长机制能够实现温度控制的纳米带,其典型宽度高达 30 μm,长度超过 100 μm,同时保持厚度低于 50 nm。单个 GeSe 纳米带的纳米级阴极发光光谱表明,在室温下具有强烈的温度依赖性带边发射,其基本带隙和温度系数分别为 E g (0) = 1.29 eV 和 α = 3.0×10 -4 eV/K,证明了高质量 GeSe 和低浓度的非辐射复合中心,有望用于包括光发射器、光电探测器和太阳能电池在内的光电应用。
摘要 当前的能源危机促使了可再生能源和储能材料的开发和利用。本研究以乙酰丙酸 (LA) 和 1,4-丁二醇 (BDO) 为原料,通过酶法和化学法合成了新型乙酰丙酸 1,4-丁二醇酯 (LBE)。酶法在合成过程中表现出优异的性能,LBE 产率为 87.33%,而化学法副产物较多且能耗较高。此外,还评估了所得 LBE 作为相变材料 (PCM) 的热性能。差示扫描量热法 (DSC) 和热重分析 (TGA) 表明熔化温度、熔化潜热和热解温度分别为 50.51 ℃、156.1 J/g 和 150~160 ℃。与传统石蜡相比,制备的PCM具有更高的相变温度、更高的熔化潜热和更好的热稳定性。添加膨胀石墨(EG)后,热导率可提高至0.34 W/m/k。综上所述,LBE作为低温相变储能材料在储能应用中具有巨大的潜力。关键词:乙酰丙酸,多元醇酯,热性能,酶法,热可靠性图文摘要
polyactic酸(PLA)是一种可生物降解的聚合物,目前用于药物和手术设备。有人担心环乳酸(CPLA)是PLA合成的副产品,可以作为不良污染物引入人体。我们通过液相色谱质谱法(LC – MS)对CPLA七聚体(CPLA-7)进行了定量投资。我们发现CPLA-7与血清蛋白强烈结合,并且在常规剥夺后仅回收了62%的CPLA-7。因此,我们通过牛血清白蛋白(BSA)涂层色谱柱直接将血清注入LC-MS/MS系统,并发现CPLA-7的回收率提高到84%,并且检测(S/N = 3)和定量极限(S/N = 10和低于15%的相对标准偏差)为1.5和2.5和2.5和2.5 ng/g。我们得出结论,直接注射LC -MS/MS使用BSA列是血清中CPLA的一种简单有效的定量分析方法。©2008 Elsevier B.V.保留所有权利。
单壁碳纳米管 (SWCNT) 具有可调的光电特性和高载流子迁移率,是下一代能量收集技术(包括热电发电机)的理想材料。控制这些独特的 1D 纳米材料中的费米能级通常由 SWCNT 与电子或空穴接受物质之间的电荷转移相互作用实现。掺杂 SWCNT 网络的传统方法通常涉及将分子氧化还原掺杂剂物质扩散到固态薄膜中,但溶液相掺杂可能为载流子传输、可扩展性和稳定性提供新途径和/或好处。在这里,我们开发了使用 p 型电荷转移掺杂剂 F 4 TCNQ 对聚合物包裹的高浓缩半导体 SWCNT 进行溶液相掺杂的方法。这使得掺杂的 SWCNT 墨水可以铸成薄膜,而无需额外的沉积后掺杂处理。我们证明在 SWCNT 分散过程的不同阶段引入掺杂剂会影响最终的热电性能,并观察到掺杂剂改变了聚合物对半导体和金属 SWCNT 的选择性。与致密的半导体聚合物薄膜相比,溶液相掺杂通常会导致形态破坏和 TE 性能比固态掺杂更差,而溶液掺杂的 s-SWCNT 薄膜的性能与固态掺杂的薄膜相似。有趣的是,我们的结果还表明,溶液相 F 4 TCNQ 掺杂会导致固态薄膜中完全电离和二聚化的 F 4 TCNQ 阴离子,而在沉积后掺杂 F 4 TCNQ 的薄膜中则不会观察到这种情况。我们的研究结果为将溶液相掺杂应用于可能需要高通量沉积技术的广泛高性能基于 SWCNT 的热电材料和设备提供了一个框架。
团队受益于多个工业合作伙伴的贡献 - 首先也是最重要的是,Bridgers&Paxton的Dwight Dorsey努力将不同的研究组件整合到液相系统的功能设计中。Dwight的实践经验和看似无限的耐心对于我们将这项技术的可行综合设计融合在一起的能力至关重要。如图2所示,该项目受益于多个合同合作伙伴。团队负责人和公司包括与JT Thorpe&Son,Gordon Bigham的Dwight,Joe Rigby,与Job Industrial Services一起,Dereje Shiferaw与Vacuum Process Engineering一起,Glen Bostick,Glen Bostick和David Wait与Nooter/Eriksen和Nathan Tedford一起使用Hatch。Dan Barth具有高温系统设计,汉克价格和Bruce Kelly的太阳能动力学为熔融盐提供了有关泵,阀门和油箱设计的重要细节。与ICL的Reinhard Effenberger博士是研究计划的早期且一致的支持者,领导了工业盐化学的努力。
在整个过程中,对替代基质的引用被删除 - 目前,仅使用此测试方法分析血液样本。对 LC-MS DI H2O 的引用被更正为 LC-MS H2O。在 41.2 中的注释中指定,当以稀释度分析样本时,样品不会达到标准体积。在 41.7 中,增加了保留时间比较包含在定性数据评估中的规范,并添加了描述无意义数据的部分。在 41.8.3.1 中,更改了第一点中关于比较分数和各个分数组成部分的措辞。在 41.8.3.2 中添加了使用保留时间来区分目标化合物的附加信息。在 41.8.4 中添加了注释 1 和 2,用于评估目标化合物和内标性能。在附录 A 中,对照 A 更新为用可待因和氢吗啡酮代替吗啡和替马西泮;对照 B1 更新为用氢可酮代替羟可酮,并添加了氟阿普唑仑和氯硝唑仑。将 COC- d3 添加到 41.6.5 和附录 A。更新了附录 B 中的仪器参数以反映 HPLC 级甲醇的使用。
摘要在这项研究中,固相分散提取(SPDE)用于血清预处理以及在同时分析止痛药和辅助镇痛药(总计30种类型)中,通常用作疼痛患者的第一和第二选择治疗,并通过液态色谱/时间播放时间/时间仪表术(LC/TOF-MS)。使用OASIS MCX作为固相凝胶对SPDE的最佳条件的检查表明,提前剥夺的血清样品的回收率为49-87%,而当不进行脱蛋白时,回收率高达78-112%。无论存在或不存在depoteinizin,矩阵效应都在±10%以内,即使没有进行脱蛋白化,也可以抑制其影响。结果表明,当使用SPDE进行预处理时,血清脱蛋白是不必要的。在LC/TOF-MS测量中,使用Core-Shell型柱柱C18(150 mm×2.1 mm,1.7 µm)作为LC柱和50 mm乙酸铵缓冲液(pH 7.8)/乙酰酮/甲醇/甲醇混合物作为移动相。30种药物分离良好,定量极限为0.25-10 ng/ml,校准曲线的相关系数高于0.998,平均回收率范围为77.7.7%至112.1%。该方法在法医和急诊医学领域的血清中筛选镇痛药和辅助镇痛药(总共30种类型)很有用。关键词:止痛药;固相分散提取; LC/TOF-MS;血清
蜂蜜是世界各地消费的天然健康产品。由于蜂蜜的营养价值以及在现代医学中的药用活性,其消费量正在不断增加[1,2]。然而,在养蜂业中,一些养蜂人使用抗生素对抗多种细菌性疾病。因此,可以在蜂蜜中检测到微量抗生素[3]。在蜂蜜、牛奶、鸡蛋、鱼或肉等各种样品中都发现了抗生素残留(如磺胺类药物)[4–7]。最近,已经开发出各种策略来有效分析蜂蜜中的 SA 残留[8,9]。磺胺 (SA) 残留分析是一个主要关注点,因为这些药物的存在可能是一个公共卫生问题。此外,它可能导致抗生素耐药性致病菌的产生[10]。适当测定蜂蜜中极低浓度的 SA 是一项真正的分析挑战。已经采用各种分析方法来分析蜂蜜样品中的 SA 残留[11]。鉴于蜂蜜作为纯天然产品存在此类风险,欧盟已禁止在农业中使用 SA 类抗生素。欧盟还设定了蜂蜜等动物食品中 SA 的 MRL [12]。以初始物质(SA 及其代谢物)的总和为基准,SA 必须低于采用最佳分析方法得出的 LOQ。土耳其法律当局已禁止在养蜂业中使用抗生素 [13]。尽管最初建议使用磺胺噻唑进行控制,但由于在使用数月后在蜂蜜中发现残留物,因此已禁止使用。由于 SA 含量过高会带来这些问题,因此对 SA 的定量分析是一个主要关注点,必须对其进行监测才能检测出食品(如蜂蜜)中是否存在 SA。因此,开发更灵敏、更先进的分析方法来测定如此低含量的 SA 残留至关重要。当今全球市场对食品安全和质量的关注度越来越高。因此,开发新的、先进的分析方法至关重要。对于食品组学而言,主要挑战之一是改进分子水平上有关有害化学物质作用的有限信息[14]。从这个意义上说,将现代分析方法与组学方法相结合,可以提供一种强有力的工具来应对检测食品中痕量潜在有害化学化合物的挑战[15]。LC-HRMS(高分辨率MS)是针对复杂基质进行靶向或非靶向(非靶向)筛选的最有力工具之一,因为该技术具有许多独特的优势,例如高分辨率、