未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(该版本发布于2024年7月19日。; https://doi.org/10.1101/2024.07.18.604193 doi:biorxiv Preprint
包装行业是塑料的主要用户,它贡献了进入我们环境的最高塑料废物。因此,诸如基于生物的塑料之类的替代品已经出现并变得越来越商业化。热塑性淀粉(TPS)是生产生物塑料膜中使用的原材料之一。但是,使用TPS的主要缺点是由于其机械性较低,障碍性能较差和蓬松性。本评论文章将TPS摘要作为食物包装材料的选择。它通过掺入生物填充物和Essentials Oils来回顾有关TPS改进的最新研究。它还描述了对TPS增强生物膜对膜特性(包括机械,屏障和抗菌特性)的影响。本文还讨论了TPS增强生物膜的性能,以确保食品包装应用食品的货架稳定性和易腐性。最后,它还强调了食品包装行业TPS增强生物膜的挑战和机会。
图1:位于大都市,地区和农村地区的澳大利亚州和领土上的调查代表。nsw =新南威尔士州,nt =北领地,昆士兰州=昆士兰州,sa =南澳大利亚州,tas =塔斯马尼亚州; vic =维多利亚州,西澳大利亚州=西澳大利亚州当前诊断的临床景观
宽频段晶体中的抽象缺陷中心对它们在光电和传感器技术中的应用中的潜力引起了人们的兴趣。然而,众所周知,由于钻石,碳化硅或氧化铝的高度绝缘晶体中的缺陷,由于其较大的内部耐药性,因此很难电气兴奋。为了应对这一挑战,我们意识到了基于十六角硼(HBN)的碳中心的垂直隧道连接处令人兴奋的缺陷范式。通过Van der Waals技术的设备的合理设计使我们能够升高和控制与缺陷到波段和intradefect的电致发光有关的光学过程。对隧道事件的基本理解是基于HBN中的谐振缺损状态之间电子波函数振幅转移到石墨烯中金属状态的,这导致由于组成材料的不同条带结构而导致电子特性的巨大变化。在我们的设备中,通过隧道通路的电子衰变与辐射重组竞争,由于特征性隧道时间在屏障的厚度和结构上具有显着的敏感性,导致载体动力学的可调性程度。这使我们能够实现Intrade的过渡的高耐高率电激发,超过了几个数量级,因此在子兰段式方案中光激发的效率。这项工作代表了通用且可扩展的平台的显着进步,用于使用宽带间隙晶体中的缺陷中心的电动设备,其特性通过在设备工程水平上激活不同的隧道机制进行调制。
图4(A-D)微生物和(E-H)代谢产物的Bray-Curtis差异以及微生物(I-J)(I-J)和代谢物(K-l)的永久性差异。(a) - (h)中的椭圆形表示每个基因型和性别分组的95%置信区间。(i) - (l)中的条表示每个变量解释的永久差异的幅度,p值显示为每个栏上方的数据标签。(i) - (l)中的“残差”变量表示基因型和壳体所不明的差异。微生物组和代谢组分析分别包括41只动物的161个样本和145个样本。Permanova是在每个性别特异性的HAβ-KI队列上进行的,通过将基因型嵌套在housing_id中并使用以下公式:adonis2(formula = data_subset〜基因型/housing_id,data = meta_test,meta_test,meta_test,metage ='bray =“ bray”,dermiutations = 999,dermiputations = 999,permistation = 999,partele = 999,pareallal = 32,by by =“ by x enter =” exter =“ by x exter”)。使用Benjamini-Hochberg错误的发现率调整了所得的Permanova P值(I-L中的条形上方的文本)。haβ-ki,人淀粉样β型敲入; Permanova,方差差异分析; wt,野生型。
甲状腺素转运蛋白心脏淀粉样变性 (ATTR-CA) 是一种不可避免地进展且致命的心肌病。随着对甲状腺素转运蛋白错误折叠以及随后心肌内淀粉样蛋白原纤维积聚的潜在发病机制的了解不断加深,人们开发了几种作用于疾病途径不同阶段的疾病改良疗法。Tafamidis 是首个获批用于治疗 ATTR-CA 的疗法,至今仍是唯一一个,它与 acoramidis 一起稳定甲状腺素转运蛋白四聚体,防止分解、错误折叠和淀粉样蛋白原纤维的形成。基因沉默剂(如 patisiran、vutrisian 和 eplontersen)和新型基因编辑疗法(如 NTLA-2001)可减少肝脏中甲状腺素转运蛋白的合成。抗淀粉样蛋白疗法是 ATTR-CA 的另一种治疗策略,旨在结合淀粉样蛋白原纤维表位并刺激巨噬细胞介导的心肌淀粉样蛋白原纤维清除。许多此类疗法尚处于早期研究阶段,但代表了尚未满足临床需求的重要领域,甚至可能逆转疾病并恢复晚期患者的心脏功能。
兰氏蛋白心脏淀粉样蛋白病(ATTR-CA)代表一种无情的渐进性和致命的心肌病。对导致经甲状腺素蛋白错误折叠的潜在发病机制以及随后在心肌内的淀粉样蛋白原纤维的积累导致了几种在疾病途径不同阶段起作用的疾病改良疗法的发展。tafamidis是第一个,迄今为止仍然是唯一批准用于治疗Attr-CA的治疗方法,与阿ac虫一起稳定了甲状腺素四聚蛋白四聚体,防止分类,偏置和形成淀粉样纤维纤维。基因沉默剂,例如Patisiran,vutrisian和eplontersen,以及新型的基因编辑疗法,例如NTLA-2001,可以减少经硫代蛋白的肝合成。抗淀粉样蛋白疗法代表了Attr-CA治疗的另一种策略,旨在结合淀粉样蛋白原纤维表位并刺激巨噬细胞介导的从心肌中去除淀粉样蛋白原纤维。其中许多治疗方法处于早期研究阶段,但代表了未满足的临床需求的重要领域,即使在患有晚期疾病的患者中,也可能会逆转疾病并恢复心脏功能。
阿尔茨海默氏病(AD)通过沉积细胞外99斑块的定义,由淀粉样蛋白β(Aβ)多肽和神经内神经元100神经纤维纤维纤维缠结(NFT)组成的骨外99斑块(NFT)组成。在过去20年中,正电子发射断层扫描(PET)放射性示踪剂已开发为102个图像淀粉样蛋白斑块和tau Tangles在体内(2-7)。Currently, 3 fluorine-18-labeled amyloid 103 radiotracers ( 18 F-florbetapir, 18 F-flutemetamol, 18 F-florbetaben) are approved for clinical use by 104 regulatory agencies in the US, the European Union, and other countries to estimate amyloid 105 plaque density in adult patients with cognitive impairment who are being evaluated for AD and 106 other认知能力下降的原因。在2020年,美国食品药品监督管理局(FDA)107批准了Tau radiotracer 18 F-Flortaucipir(FTP),以估计成人认知障碍患者108 NFT的密度和分布,这些患者正在评估AD的AD。109
经胆管素心脏淀粉样变性(ATTR-CA)是一种进行性且最终致命的心肌病,这是心力衰竭越来越多的原因。1,2在国家淀粉样变性中心(NAC)开发的分期系统基于N末端pro-B型纳特里尿素肽(NT-ProBNP)和估计的肾小球滤过率(EGFR)的组合,已广泛用于将ATTR-CA患者分层为三个预测类别。尽管在临床实践和临床试验中都证明了效用,但NAC 2阶段和第3期疾病的患者中存在相当多的异质性。由于NAC 2阶段和第3期疾病患者的临床表型中有些重叠,诊断后的前1个2个月的生存与生存相似,在长时间的随访中,生存的差异明显。3考虑到这种固有的局限性,仍有未满足的临床需求,即确定患者早期死亡风险增加的患者,他们可能会从更密集的治疗策略中受益并更频繁地随访。这项研究的目的是进一步扩展现有的NAC分期系统,以纳入一个额外的疾病阶段,该疾病阶段可以鉴定出早期死亡率高风险的患者。
杰斐逊数字共享将这篇文章带给您免费和开放访问。Jefferson Digital Commons是Thomas Jefferson大学教学中心(CTL)的服务。Commons是杰斐逊书籍和期刊的展示,经过同行评审的学术出版物,大学档案馆的独特历史收藏以及教学工具。Jefferson Digital Commons允许研究人员和感兴趣的读者在世界任何地方学习并与Jefferson奖学金保持最新状态。本文已被杰斐逊数字共享的授权管理人接受,以将其纳入心脏病学教师论文。有关更多信息,请联系:jeffersondigitalcommons@jefferson.edu。