● 1 种绿叶蔬菜 - 绿叶蔬菜(羽衣甘蓝、芥菜、芜菁)、甘蓝、生菜(任何品种)或菠菜 ● 1 种洋葱 ● 3 种水果 - 香蕉、苹果和橙子是最常见 ● 1 种淀粉类蔬菜 - 土豆、玉米或芜菁 ● 根据价格选择其他 6 种水果和蔬菜
属性(Ruiz-Ruiz等,2017)。由于LA具有羧基和羟基官能团,因此也可以将其视为一个平台和中间体,用于转化为几种不同的有用和有价值的化学物质(Gao等,2011)。la是生物技术生产几乎完全通过石化途径盛行的大规模化合物之一,大约90%通过微生物发酵实现了当前生产的90%(Macedo等,2020)。使用广泛的微生物和不同类型的底物来优化产量和生产率(Tian等,2021),LA的发酵生产已被广泛研究了多年。最著名的野生型LA生产者是乳酸细菌(LAB),它们是非散发形式,革兰氏阳性,非有氧或气化剂,耐酸和严格发酵生物的(Fidan等,2022)。在实验室中,乳酸杆菌是具有最大商业兴趣的属,因为它具有同质性,并且主要通过将一个分子转换为LA分子的LA分子,主要是通过Embden -Meyerhoff - Parnas(EMP)途径产生的(Singhvi等,2018)。重组大肠杆菌的重组菌株,coagulans芽孢杆菌,谷氨酸杆菌,地衣芽孢杆菌和代谢酵母菌的生产也已评估(Awasthi等,2018)。尽管长期以来已经建立了工业规模的生物技术生产,但仍有进一步改进的空间(Abedin等,2023)。使用实验室的主要障碍是它们的复杂营养需求和中介体,分别导致成本和污染风险增加(Abedi和Hashemi,2020年)。关于碳底物,几种农业的低或无价废物,例如糖蜜,汁液废物和淀粉类生物量奶油浪费,传统上已被发酵成LA(Alexandri等人,2019年; Sakr等,2021年)。最近,还提出了农业和林业残留物作为碳源(Ajala等,2020; Yankov,2022)。但是,原材料和发酵的高成本 - 分离过程以及高度产生的LA生产微生物的选择严重限制了此类应用(Ren等,2022)。大量努力致力于制定发酵策略,例如合并生物处理(CBP),同时进行糖精和发酵(SSF),以及同时的糖精和共同发酵和共同发作(SSCF),作为希望的替代方案(Mazzoli,202211221)。为此,已经实施了两个主要概念,即基于共培养的合成微生物联盟的发展(Sun等,2021)和基因工程的微生物(Levit等,2022)。与纯培养物相比,微生物联盟已被证明不容易受到环境干扰和污染的影响,同时表现出较高的转化效率(Sun等,2019)。然而,由于微生物种群之间的复杂相互作用,共同培养,增长动态,监测和控制的可靠方法仍然具有挑战性(Mittermeier等人,2023年)。代谢工程旨在开发具有有效产物形成的单菌株,但对于微生物的主要遗传和代谢重新设计需要大量的努力(Hossain等,2023)。LA生产的第二个瓶颈是原料处理和灭菌的总体过程成本(Marchesan等,2021),除非使用嗜热菌株(Garita-Cambronero等,2021年),否则这是避免污染所必需的,否则