这项研究确立了了解一个地区的农场债务和农场生存能力状况的重要性。然而,这种类型的研究往往会引发更多问题,而且还有更多方法可以进一步研究。其中最重要的,也是农场债务工作组强调的,是与整个农业部门的农民进行实地调查。研究提出了深入的案例研究,采用整个农场的方法来研究这个主题,研究范围(而不是平均值),并捕捉农民在做出战略决策时考虑的所有关键因素。研究发现,几乎没有债务和盈利能力低的农场存在知识差距。对于土地价值,建议开发一个估值模型来计算资本化率,该模型可用于测试政策对土地价值的影响,并关注农村土地估值如何影响环境问题。除此之外,一个明显的研究问题是,如何应用从这项研究中获得的理解来帮助管理对农场生存能力的潜在影响,同时实现环境成果?研究强调,有很多事情“摆在厨房桌子上”,未来对该地区的任何投资都应激励跨多个环境成果的创新。这项研究的其他问题包括:过去使用农场债务作为企业管理工具对当前的环境问题有何影响?农场规模和企业所有权的扩大将如何影响环境结果和当地社区的福祉?
藻类起源于化石记录,在前寒武纪近三十亿年。大概的计数表明大约有72,500种藻类。其中,可能已经正式发布了大约44,000个名称,已经处理了33,248个名称(1)。藻类代表着一个至关重要的真核生物。它们具有重要意义,因为它们是从海洋环境过渡到土地的开创性生活形式,随后发展成为我们今天看到的各种植物(2)。与陆生植物相比,大多数藻类都是光合作用,并且具有更简单的细胞结构和细胞器。藻类形成一个多媒体群,这意味着它们不共享共同的祖先。虽然它们的质体可能起源于蓝细菌,但采集过程似乎在不同的藻类组之间有所不同(3)。微藻具有巨大的生物多样性,并且在很大程度上尚未作为资源。每个物种可能具有独特的特征,潜在地含有丰富的碳水化合物,糖和蛋白质。这些特质使它们对于生产动物饲料甚至食物以供人类消费而产生有价值(4)。藻类是丰富的石油来源,可与菜籽油(例如菜籽油,大豆和菜籽)相媲美。这种油可以很容易地转化为生物柴油。因此,利用微藻生物生产具有巨大的长期潜力(5)。藻类在肥料行业,生物修复和污染控制中找到应用。这些角色对于维护水生生态系统的平衡至关重要,并充当有价值的生物指导者。栖息地内藻类的生长显着影响生态系统,并迅速对水生环境的改变,尤其是与营养水平有关。它们在水体内不同区域的分布受其物理化学条件的影响(6,7)。
在 Vale 小学,我们力求充分利用我们提供的全部资源,鼓励采用一种寻求最佳方法来学习课程“内容”的方法。它不认为学习只是课程和附加内容或额外内容。学习发生在课程中、活动中、学校日常活动、学习环境和课堂之外。通过利用这些学习要素,我们旨在最大限度地利用学习计划并确保实现 Bailiwick 课程的目标。
基于自旋柱的DNA纯化试剂盒(例如Qiagen dneasy血液和组织试剂盒)一直是从包括腹足动物在内的各种生物体中提取基因组DNA的最爱。如前所述,这些套件的缺点是从某些样本类型(例如存储在乙醇中的样本类型)中可以实现的GDNA的数量和质量较低,但是在许多其他情况下,从其他样本类型中提取的GDNA可以很好地工作。可用的商业自旋柱套件的优点(例如Qiagen和Zymo品牌产品)是此过程中速度,易用性和缺乏有害化学物质的速度。蜗牛矢量工作组建议可以有效地使用几种基于自旋的柱子的试剂盒和方法,其中可以从新鲜组织中取出少量组织(例如部分头部脚),以避免过载和阻断旋转柱,并避免大量抑制物质的含量(请参阅Adema 2021)。此外,对于基于PCR的应用程序(甚至是扩增子面板),DNA质量和数量较低的DNA仍然适合使用,这些提供了一个不错的选择。注意,但是,使用Qiagen B&T旋转柱套件提取的生物胶质蜗牛的基因组DNA产生了具有出色读取长度的PACBIO组件(Bollmann,OSU)。
实现这一目标将有助于确保任何政策变化都能够尽可能地“经济” 2 地惠及个人和社区。但是,经济必须以与促进可持续管理 3 一致的方式进行。否则,很有可能会将最初导致环境问题的经济思维用于评估旨在解决这些问题的政策。这种一致性可以通过更充分地认识效率的含义来实现,其中包括考虑“外部性”(即未考虑的对其他人的影响)。这样,塔拉纳基每个人生活和工作的“系统”就会比原本更加平衡(或者,用经济术语来说,“均衡”)。
蓝细菌通常称为蓝绿色藻类,是一组光合细菌,可以在湖泊,池塘和河流中传播,形成盛开。蓝细菌的开花通常被称为有害藻华(HAB),这是由于某些蓝细菌产生氰诺毒素的能力,对人类和动物造成了健康危害。1个腐烂的花朵也会导致水中溶解的氧气迅速耗尽,这可能导致鱼突然死亡。HAB在夏季和加拿大早秋季最多产,当时休闲用水也是最多的。加拿大卫生部已经建立了评估水质和管理娱乐淡水中蓝细菌风险的指南,2,并为一组氰毒素(MC)设定了指南限制。此限制(10 µg/L)旨在保护在游泳等活动期间因意外摄入水而暴露的最脆弱的人群(儿童)。
该模块探索了河流生物多样性,这是一些生活在河流中的常见动物以及维持它们的基本食物链的说明。构成食物链基础的宏观围栏物具有对水污染的敏感性不同。随后污染敏感或耐受物种的丰度或不存在用作水质的生物探测者。此过程称为质量等级或Q-System。学生将被介绍给该系统,并探讨某些物种(例如大西洋鲑鱼)所面临的挑战。最后一课将探讨非本地,侵入性外星物种对局部生物多样性的影响。
通过研究什么是生物多样性以及为什么我们必须保护它,可以探索淡水和生物多样性主题。您将进行研究以发现河流和湖泊的标志性动物(例如鲑鱼,鳗鱼,鳟鱼,五月蝇,翠鸟,北斗星,苍鹭,水獭)。了解这些动物的生活方式(它们的栖息地要求),它们如何迁移以及为什么它们对我们的环境很重要,将使您深入了解不同物种的相互依存关系。您会发现,生活在河中的无脊椎动物可以告诉您很多有关水质的信息。这是因为有些人对污染非常敏感,并且会因污染而被杀死。您将了解质量评级或“ Q系统” - 一种基于河流中存在的无脊椎动物的方法来确定水质。也引入了基本的公民科学方法论。
“蓝色碳”生态系统(BCE),尤其是红树林沼泽,通常因其缓解潜力而受到认可,并且在这方面比内陆淡水生态系统受到了更大的关注(IPCC 2014)。因此,在本章中,我们关注淡水生态系统(湿地,湖泊,水库和河流)以及淡水依赖的沿海和海洋系统。本章采用“问题原因”方法来解决基于淡水生态系统的气候变化的缓解。它在什么情况下讨论了长期碳汇(即淡水生态系统)成为碳源,以及如何消除或最小化这种转变,以继续从隔离碳的潜力中受益。这些缓解措施具有实质性的共同利益,并与可持续发展目标保持一致,但是它们的采用可能需要根据当地和区域背景来量身定制。
使用概念模型(Cessi,1994; Cimatoribus等,2012)和完全占地的海洋气候模型(De Niet等,2007; Toom et al。,2012; Mulder等,2021)。这些研究的重要结果之一是(在这些模型中)的存在与可观察的数量有关(Rahmstorf,1996),现在通常称为AMOC稳定性(或制度)指标。该指标在文献中具有许多不同的符号,例如m ov(de Vries and Weber,2005)或F ov(Hawkins等,2011)。在这里,我们将遵循Weijer等人。(2019)并使用f ovs(f ovn)作为AMOC在大西洋盆地的35°S(60°N)的南部(北部)边界上携带的淡水运输(Dijkstra,2007; Huisman et al。,2010; Liu et al。,2017)。可用的观察结果(Bryden等,2011)表明,当今的AMOC将淡水从大西洋出口(F OVS <0)。众所周知,F ovs忽略了一些相关的过程(Gent,2018),但是如果人们接受f ovs是适当的指标,则AMOC基于其观察到的价值(Weijer等,2019)。
