ii 机器学习:人工智能研究的一个领域,通过分析数据来发现预测的模式和规则。 学习主要有三种类型:监督学习、无监督学习、强化学习和深度学习。
响应深层摄影所带来的不断升级的威胁,以前的研究工作重点是发明利用CNN体系结构的检测模型。尽管结果有希望,但其中许多模型在面对现实世界的情况时表现出可重现性和实用性的局限性。为了应对这些挑战,这项研究努力开发一个更概括的检测框架,能够辨别各种数据集的深击内容。通过在精选的Wilddeepfake数据集中训练简单但有效的ML和DL模型,该研究评估了检测来自DeepFake对应物的真实媒体的可行性。通过对模型性能的比较分析和评估,本研究旨在为可靠的深泡检测方法的发展做出贡献。这项研究中使用的模型表明,在对DeepFake介质进行分类方面有明显的准确性。
摘要:DeepFake技术的扩散引起了人们对社交媒体平台上错误信息传播的关注。在本文中,我们提出了一种基于深度学习的方法,用于检测DeepFake推文,特别是由机器生成的推文,以帮助减轻在线错误信息的影响。我们的方法利用FastText嵌入来表示推文文本,并将其与深度学习模型相结合。我们首先预处理文本,然后使用FastText嵌入将它们转换为密集的向量表示。这些嵌入式捕获有关推文内容的语义信息,这对于区分真实和机器生成的推文至关重要。然后,我们将这些嵌入将这些嵌入给深度学习模型,例如卷积神经网络(CNN)或长期短期内存(LSTM)网络,以将推文归类为真实或机器生成的推文。该模型是在标有标记的Tweet数据集上训练的,在该数据集中,使用最先进的文本生成模型合成机器生成的推文。对推文的现实世界数据集的实验结果证明了我们方法在检测机器生成的推文中的有效性。我们的方法实现了很高的准确性,并且优于在社交媒体上进行深层检测的现有方法。总的来说,我们提出的方法为检测机器生成的推文并遏制整个社交媒体平台上的错误信息的扩散提供了强大而有效的解决方案。
2024看到了NSIA下的第一个上诉的结论。法院在做出与国家安全有关的决定时认可了政府的广泛酌处权。它还确认,即使这会造成财务损失,当事方也不能补偿遵守补救措施的费用。该裁决并没有阻止其他上诉 - FTDI控股公司正在挑战政府的决定,要求其出售其在苏格兰半导体公司中的股份(尽管为了遵守政府在国家安全审查中的酌处权,法院拒绝了申请,以中止政府的撤离令,等待上诉的结果)。
3 另外,道具的展示顺序也是随机的。 4 由于10个项目中有4个被呈现,因此如果随机呈现,每个项目出现的次数可能会有所不同。因此,可以使用平衡的不完全区组设计(Louviere 和 Flynn,2010)来确保项目出现的频率相等。然而,由于本章的样本量非常大,达到 150,010(使用下面描述的计数方法),我们确定由于随机呈现而导致的出现次数差异很小。
1助理教授,234助理教授,印度卡纳塔克邦,卡纳塔克邦,贝达尔,贝拉加维,贝拉加维,卡纳塔克邦,印度卡纳塔克邦的班纳塔克邦的Guru Nanak Dev工程学院计算机科学与工程系,印度,印度摘要,通过有效的武器检测是现代安全系统中的重要武器探索。本研究使用Yolov8深学习模型介绍了AI驱动的武器检测系统。该系统在Roboflow武器检测数据集上进行了训练,以在实时视频提要或图像中准确识别和分类武器。通过利用先进的计算机视觉技术,该模型可以增强监视功能,减少响应时间并改善高风险环境中的安全措施。实验评估证明了高准确性和效率,这使该系统成为公共空间中自动化威胁检测的可靠解决方案。关键字:武器检测,人工智能(AI),深度学习(DL),Yolov8,监视系统,实时检测I.引言随着公共场所的越来越多的安全问题,实时武器检测已成为至关重要的必要性。传统的监视系统在很大程度上依赖手动监测,这容易受人为错误和效率低下。人工智能(AI)和深度学习(DL)纳入安全应用程序的整合已显着增强了自动化威胁检测,从而更快,更准确地识别了潜在风险。本研究重点是使用最新的对象检测算法Yolov8模型实施AI驱动的武器检测系统。通过利用Roboflow的深度学习技术和策划的数据集,该系统旨在实时从视频供稿或图像中实时识别武器。基于AI的武器检测AI驱动武器检测系统的重要性提供了几个关键优势:
⇒f(x,a)= q(s,a)或f(x)=A⇒数学函数比表高得多•状态描述可以彼此相关=>,如果到目前为止我们还没有遇到特定的状态描述,我们可以从类似情况中得出适当的动作。(概括)