summary深层生成模型通常用于从复杂的高维分布中生成样品。尽管取得了明显的成功,但其统计特性尚未得到很好的理解。一个常见的假设是,借助足够大的训练数据和足够大的神经网络,深层生成模型样本在从任何连续目标分布中采样时都会有很小的错误。我们建立了一个统一的框架,揭穿了这种信念。我们证明,广泛的深层生成模型(包括变异自动编码器和生成对抗网络)不是通用发生器。在高斯潜在变量的主要情况下,这些模型只能生成浓缩的样品,显示出轻尾。使用来自度量和凸几何浓度的工具,我们为更通用的对数concave和强烈的log-conconcove潜在变量分布提供了类似的结果。我们通过还原参数将结果扩展到扩散模型。,当潜在变量位于带正曲率的歧管上时,我们使用Gromov -levy不等式提供了类似的保证。这些结果阐明了常见的深层生成模型处理重型尾巴的能力有限。我们说明了工作与模拟和财务数据的经验相关性。
随着深度学习技术的快速发展,合成媒体的创建,尤其是深层的假声音,已经变得越来越复杂且易于访问。这在维持基于音频的内容的信任和真实性方面构成了重大挑战。在响应中,该项目提出了一种基于机器学习的方法来检测深层的假声音。该项目首先策划了一个由真实和深厚的假语音样本组成的多样化数据集,涵盖了各种人口统计学,口音和情感表达。预处理技术用于清洁和标准化音频数据,然后进行功能提取以捕获语音信号的相关特征。用于模型开发,采用了复发层增强的卷积神经网络(CNN)体系结构,从而利用了其从音频的频谱图来学习空间和时间特征的能力。该模型使用分类横向渗透损失在准备好的数据集上进行了训练,并通过反向传播进行了优化。对训练的模型进行评估是在单独的测试集上进行的,测量诸如准确性,精度,回忆和F1评分之类的性能指标。后处理方法,包括阈值和平滑,用于完善模型的预测并增强鲁棒性。所提出的方法提供了一个有希望的框架,用于检测音频内容中深层的虚假声音,这有助于努力打击错误信息的传播并保留数字媒体的完整性。但是,跨学科的持续研究和协作对于应对新兴挑战并确保负责任的伪造检测技术至关重要。
摘要:与传统的生物特征识别方法相比,由于其独特的特性,大脑生物识别技术引起了科学界的越来越多的关注。许多研究表明,脑电图特征在个人之间是不同的。在这项研究中,我们通过考虑特定频率的视觉刺激引起的大脑反应的空间模式提出了一种新的方法。更具体地说,我们建议,用于识别个体,将常见的空间模式与专门的深度学习神经网络相结合。采用常见的空间模式使我们能够设计个性化的空间过滤器。此外,在深层神经网络的帮助下,空间模式被映射到新的(深)表示中,在这些表示中,以高正确的识别率进行了个人之间的歧视。我们在两个稳态视觉诱发的潜在数据集上进行了全面比较,分别由三十五和11受试者组成的两个稳态视觉诱发的潜在数据集进行了全面比较。此外,我们的分析包括稳态视觉诱发的潜在实验中的大量闪烁频率。对这两个稳态视觉诱发潜在数据集进行的实验显示了我们方法在人识别和可用性方面的有用性。所提出的方法在大量的视觉刺激频率上实现了99%的平均正确识别率。
Lubrizol Advanced Materials, Inc.(“Lubrizol”)希望您对此建议的配方感兴趣,但请注意,这只是一种代表性配方,并非商业化产品。在适用法律允许的最大范围内,Lubrizol 不作任何陈述、保证或担保(无论是明示、暗示、法定或其他形式),包括任何关于适销性或特定用途适用性的暗示担保,或关于任何信息的完整性、准确性或及时性的暗示担保。Lubrizol 认为此配方所基于的信息和数据是可靠的,但该配方尚未经过性能、功效或安全性测试。在商业化之前,您应彻底测试该配方或其任何变体,包括配方的包装方式,以确定其性能、功效和安全性。您有责任获得任何必要的政府批准、许可或注册。本文所包含的任何内容均不得视为未经专利所有者许可而实施任何专利发明的许可、建议或诱导。与此配方相关的任何索赔可能并非在所有司法管辖区都获得批准。安全处理信息不包括安全使用所需的产品安全信息。操作前,请阅读所有产品和安全数据表以及容器标签,了解安全使用和物理及健康危害信息。您可从路博润代表或经销商处获取此配方路博润产品的安全数据表。
摘要 - 新应用程序的出现导致对移动边缘计算(MEC)的需求很高,这是一个有希望的范式,在网络边缘部署了类似云的架构,以向移动用户(MUS)提供计算和存储服务。由于MEC服务器与远程云相比的资源有限,因此在MEC系统中优化资源分配并平衡合作MEC服务器之间的负载至关重要。MEC服务器的不同类型计算服务(CSS)的缓存应用数据也可能是高度好处的。在本文中,我们调查了合作MEC系统中层次结构缓存和资源分配的问题,该系统被称为有限的Horizon成本成本最小化Markov决策过程(MDP)。为了处理大型状态和动作空间,我们将问题分解为两个耦合的子问题,并开发了基于分层的增强学习(HRL)基于基于的解决方案。下层使用深Q网络(DQN)来获取流量决策的服务缓存和工作量,而上层则利用DQN来获得合作MEC服务器之间的负载平衡决策。我们提出的方案的可行性和有效性通过我们的评估结果验证。
这项计划得出的一项明确结论是,湿疹儿童的父母在多大程度上受到其孩子病情及其所需护理的个人影响。会议上提供的个人陈述说明了他们相互交织的经历,调查数据提供了量化证据。成人湿疹患者和儿童看护者对过去一个月湿疹对全球的影响的问题的回答结果显示,他们的反应模式相同,如第 73 页所示。父母报告的自己生活受到湿疹影响的方式有很多,包括极度无助、内疚、焦虑和抑郁;婚姻、家庭和人际关系紧张;工作表现、职业成就和家庭动态受到负面影响。
图1。使用变压器模型生成样品嵌入/分类和上下文敏感分类单元嵌入的工作流程。输入(a)是表示为相对丰度向量的样本,首先要经过预处理步骤(b),以生成变压器模型(d)的文本样输入(c)。变压器模型生成样品嵌入(H Cls),该样本嵌入(H Cls)通过样本分类层(E)产生特定任务样本级别预测(F)。变压器模型还为样本中每个分类单元生成上下文敏感嵌入(G)。出现在不同样本中的相同分类单元可能会因上下文差异而具有不同的嵌入。
糖尿病性视网膜病(DR)是造成运动年龄成人不可逆失明的主要原因。先前的DR检测模型在临床应用中遇到困难。主要原因是大多数以前的方法仅使用单视数据,而单个视野(FOV)仅占视网膜FOV的13%,从而导致大多数病变特征的丢失。为了减轻此问题,我们提出了一个用于DR检测的多视图模型,该模型可以充分利用涵盖几乎所有视网膜场的多视图图像。是特定的,我们设计了一个基于交互的自我注意模块(CISAM),该模块(CISAM)融合了从卷积块中提取的局部特征,该特征具有从变压器块中学到的远距离全局特征。此外,考虑到不同观点的病理关联,我们使用特征拼图来组装和学习多种视图的特征。具有34,452张图像的最新公共多视图MFIDDR数据集进行了广泛的实验,证明了我们方法的优越性,该方法对最新模型的表现有利。据我们所知,这项工作是公共大型多视图底面图像数据集的首次研究,用于DR检测。据我们所知,这项工作是公共大型多视图底面图像数据集的首次研究,用于DR检测。
地热能是从地壳中提取的热能。它结合了行星形成和放射性衰变产生的能量。数千年来,地热能一直被用作热能和/或电力来源。(维基百科)