隐喻对确定公司的目标受众、进行正确的市场细分和市场定位、衡量产品相关广告的有效性以及建立品牌忠诚度等许多问题都有很大的影响。隐喻,用最简单的话来说,就是用已知事物解释未知事物的艺术。 “隐喻不仅将联想从以前的经历转移到新的经历,它们还可以作为简写帮助人们理解消费者体验主张及其对他们生活的意义”(McCallion,2009)。人与产品之间也存在着沟通,因此产品也承载着一定的信息。 “隐喻已被用来创建品牌标识、营销具体产品和服务、制定营销策略、创建市场研究概念以及定义买卖双方的关系”(Çorbacıoğlu,2022 年,第 3500 页)。使用 Zaltman 隐喻引出技术 (ZMET) 对 14 名美国消费者进行的访谈结果表明,隐喻对于理解消费者对广告的印象以及他们与广告相关的含义有很大帮助 (Coulter 等人,2001 年,第 1 页)。 “这两个被相互比较的事物在正常过程中并不相关;然而,大脑可以通过发挥想象力来理解新的隐喻”(Parsa and Olgundeniz,2014,第 3 页)。我们试图通过基本的推理过程来理解隐喻的含义,并创建心理模型。 “通过隐喻渗透心灵是认知无意识定位的有效方法”(Zaltman,2003 年,第 73 页)。这样,就可以获得有关消费者隐藏或显露需求的深层有用信息。这些见解有助于广告吸引消费者的注意力并激励他们采取行动(Zaltman 和 Coulter,1995 年,第 49 页)。因此,定性的 ZMET 研究可以帮助消费者了解他们更深层次的想法和情感
深层生成模型(DGM)在各个领域都表现出了巨大的成功,尤其是在使用离线数据训练的模型生成文本,图像和视频方面。同样,数据驱动的决策和机器人控制也需要从离线数据中学习发电的功能,以作为策略或政策。在这种情况下,在离线政策学习中应用深层生成模型具有巨大的潜力,并且在这个方向上进行了许多研究。但是,该领域仍然缺乏全面的审查,因此不同分支机构的发展相对独立。在本文中,我们提供了有关深层生成模型用于离线政策学习的应用的首次系统审查。,我们涵盖了五个主流深层生成模型,包括变量自动编码器,生成的对抗网络,正常的流量,变压器和扩散模型,以及它们在离线增强学习(离线RL)和模仿学习(IL)中的应用。离线RL和IL是离线政策学习的两个主要分支,是依次决策的广泛方法。值得注意的是,对于每种基于DGM的离线政策学习,我们根据DGM的使用来提炼其基本方案,CateGo-size相关工作,并在该领域中整理算法的开发过程。在主要内容之后,我们提供了有关深层生成模型和离线政策学习的深入讨论,作为摘要,我们介绍了我们对未来研究方向的观点。1这项工作为离线政策学习深度生成模型的研究进度提供了动手参考,并旨在激发改进基于DGM的离线RL或IL算法的改进。为方便起见,我们在https://github.com/lucascjysdl/dgms-forline-policy-learning上维护纸张列表。
提出了一种基于深层关联神经网络的鸡蛋状态智能分类的方法。此方法旨在自动孵化过程中鸡蛋产卵的可视化结果的识别和解释。关联自动编码器的模型比传统方法具有多个优点。例如,输入图像是预大尺寸的,并且对“卷积 - 汇总/UPS采样层”的计数实际上是根据图像大小来定义的,这提高了分类的准确性。此外,平面计数被确定为分隔商,将单元在输入层中的细胞计数(两者计数)对加倍对的功率计数计数“卷积 - 汇总/上取样层”,以将整个单元格保留在汇总/UPS采样后的总细胞计数。此过程将层平面的大小宽度和高度减半,使模型层的结构定义自动化。Deep Boltzmann机器模型比传统的Deep Boltzmann机器具有多个优点。这些包括预先调整输入图像,确定有限的Boltzmann机器的数量在经验上以提高分类的准确性,并将神经元设置为隐藏层中的神经元数量,因为两倍的神经元在可见层中的神经元计数,以满足Kolmogorov Theorem在多维连续函数的表现上,具有单位持续函数的持续功能的表现。此模型自动化模型层体系结构的定义。基于深层关联神经网络的鸡蛋发育状态的智能分类方法可以应用于智能系统中,以分类鸡蛋蜡烛可视化在工业家禽生产中的孵化过程中。
在许多慢性疾病管理和重症监护应用中推荐最佳治疗策略的数据驱动方法越来越兴趣。强化学习方法非常适合这个顺序的决策问题,但必须专门在回顾性病历数据集上进行培训和评估,因为直接在线探索是不安全且不可行的。尽管有这一要求,但绝大多数治疗优化研究都使用了偏离RL方法(例如,在纯粹的离线设置中表现较差的双重深Q网络(DDQN)或其变体)。离线RL的最新进展,例如保守Q学习(CQL),提供了合适的替代方案。,但是在将这些方法调整到现实世界应用中仍然存在挑战,在这些方法中,次优示例主导着回顾性数据集,并且需要满足严格的安全限制。在这项工作中,我们引入了一种实用且理论上的过渡抽样方法,以解决离线RL培训期间的行动失衡。我们对糖尿病和败血症治疗优化的两个现实世界任务进行了广泛的实验,以将所提出的方法的性能与突出的非上线和离线RL基准(DDQN和CQL)进行比较。在一系列有原则和临床相关的指标中,我们表明我们提出的方法可以根据相关的实践和安全指南进行实质性改善。
summary深层生成模型通常用于从复杂的高维分布中生成样品。尽管取得了明显的成功,但其统计特性尚未得到很好的理解。一个常见的假设是,借助足够大的训练数据和足够大的神经网络,深层生成模型样本在从任何连续目标分布中采样时都会有很小的错误。我们建立了一个统一的框架,揭穿了这种信念。我们证明,广泛的深层生成模型(包括变异自动编码器和生成对抗网络)不是通用发生器。在高斯潜在变量的主要情况下,这些模型只能生成浓缩的样品,显示出轻尾。使用来自度量和凸几何浓度的工具,我们为更通用的对数concave和强烈的log-conconcove潜在变量分布提供了类似的结果。我们通过还原参数将结果扩展到扩散模型。,当潜在变量位于带正曲率的歧管上时,我们使用Gromov -levy不等式提供了类似的保证。这些结果阐明了常见的深层生成模型处理重型尾巴的能力有限。我们说明了工作与模拟和财务数据的经验相关性。
深脑刺激(DBS)通过将电脉冲传递到大脑的基底神经节(BG)区域来治疗由帕金森氏病(PD)引起的运动症状的巨大希望。但是,美国食品药品监督管理局(FDA)批准的DBS设备只能以固定幅度提供连续的DBS(CDB)刺激;这种效率低下的操作可降低设备的电池寿命,无法动态地适应活动,并且可能引起严重的副作用(例如步态障碍)。在这项工作中,我们引入了一个离线增强学习(RL)框架,允许使用过去的临床数据来训练RL政策以实时调整刺激幅度,目的是减少能源利用,同时保持相同的治疗水平(即,控制)功效为CDB。此外,临床原型要求在患者部署之前证明此类RL控制器的安全性和性能。因此,我们还引入了一种离线政策评估(OPE)方法,以在对患者进行部署之前使用历史数据估算RL政策的性能。我们对配备RC+S DBS系统的四名PD患者进行了评估,在每月临床就诊期间采用RL控制器,并通过症状严重程度评估了整体控制功效(即,Bradykinesia和Tremor),PD生物制造商的变化(即,本地现场电位)和患者评分。临床实验的结果表明,我们的基于RL的控制器保持与CDB相同的控制功效水平,但刺激能量显着降低。此外,OPE方法在准确估算和对RL控制器的预期回报方面有效。
反事实遗憾最小化(CFR)是一种用于寻找不完美信息游戏的NASH平衡策略的算法系列。CFR已被用来达到许多基准游戏中的里程碑,例如Texas Hold'Em [2]和Texas No-Limit Texas Hold'Em [3]。值得注意的是,这些算法使用了CFR的表格形式,其中将策略保存在表格中,以解决代理可以找到自己的所有可能情况。在建模现实世界游戏时,该表可能会变得过多。为了压缩模型,信息摘要用于将不同的情况列入混合在一起。这些抽象的问题是它们通常需要广泛的域知识,而抽象游戏中的平衡可能无法准确反映整个游戏的均衡[4]。
真菌纤维素酶是过去四十年来最受追捧的微生物来源生物分子。由于它们在生物能源行业中用于水解纤维素的新兴应用,而纤维素是地球上最丰富的纤维素来源,因此研究趋势正朝着适应深层发酵的方向转变。然而,丝状真菌物种是高效的纤维素酶生产者,它们非常适应低水分固体载体作为底物,例如在自然界中。因此,目前正在研究各种发酵策略,以使其适应深层发酵,从而大量高质量地生产纤维素酶。新兴的研究趋势,例如使用廉价原料、营养和/或培养优化、创新的生物反应器设计、微粒辅助真菌生长和创新的基因工程方法,是研究人员最近为充分发挥这些生物分子的潜力而做出的一些努力。本综述讨论了其中一些策略及其在各种研究条件下的成功率。此外,还特别关注提高纤维素酶的市场价值以及提高工业规模生产所需的创新策略。
评估深层增强学习(MARL)算法在训练和敏感性对其他药物行为的训练和敏感性方面变得复杂。,我们通过将每个MARL算法作为元策略构建元游戏评估框架,并反复对来自不同随机种子产生的元策略组合进行反复对正常形式的经验游戏进行采样。每个经验游戏都捕获了种子跨种子的自我玩法和交叉游戏。这些经验游戏为在各种游戏分析统计中构建采样分布的基础。我们使用这种方法来评估一类谈判游戏的最先进的MARL算法。从有关独立收益,社会福利和经验最佳响应图的统计数据中,我们发现了自我播放,基于人群,免费模型和基于模型的MARL方法之间的战略关系。我们还研究运行时搜索作为元战略运营商的效果,并通过元游戏分析查找元构造的搜索版本通常会提高性能。