表面张力是材料的重要嗜热特性。它在激光材料加工过程中有助于许多效果,例如激光束悬挂期间的润湿,在深度穿透焊接过程中激光束焊接过程中的Marangoni流动或蒸气毛细管稳定性。由于这些过程需要高温,因此在金属熔化温度以上的温度下也知道材料特性。尽管理论模型可以预测依赖温度的表面张力效应的几个方面,但预测可能显示出高的不确定性。因此,通常使用理论或实验数据中的近似值或线性外推来估计表面张力[1]。缺乏表面张力数据的主要原因是与暴露于高温的测量设备有关的困难。温度测量和表面张力测量方法对于液体金属来说都是挑战性的。
AC TIG 特点 独立的振幅/电流控制允许独立设置 EP 和 EN 电流,以精确控制工件和电极的热量输入。平衡控制提供可调节的氧化物去除,这对于创建最高质量的铝焊缝至关重要 频率控制电弧锥的宽度,并可以改善电弧的方向控制。AC 波形 高级方波、快速冻结熔池、深度穿透和快速行进速度。软方波,可产生软电弧,具有最大的熔池控制和良好的润湿作用。正弦波适合喜欢传统电弧的客户。三角波减少热量输入,适用于薄铝。快速行进速度。DC TIG 特点 焊接特殊材料的电弧异常平滑和精确。脉冲。脉冲可以增加熔池搅拌、电弧稳定性和行进速度,同时减少热量输入和变形。
地雷和未爆炸弹药 (UXO) 的探测方法千差万别,每种方法都有其固有的优点和缺点。手动探测需要排雷人员使用金属探测器和探测工具,这需要大量劳动力且风险高,在富含金属的土壤中经常导致误报。经过训练的动物(如狗和老鼠)可以快速嗅出爆炸物,但它们面临着与环境条件和安全性相关的道德问题。连枷和挖掘机等机械方法通过接触地雷引爆来快速清理区域,但可能会错过深埋的地雷并破坏土壤结构,因此不适合用于生态区或民用建筑附近。探地雷达 (GPR) 可以探测非金属地雷,但深度穿透和区分爆炸物和杂波方面存在困难,尤其是在潮湿或富含矿物质的土壤中。最后,无人机传感器通过实现远程检测降低了人为风险,但它们受到高成本、操作复杂性和对天气条件的敏感性的限制。
美国国防高级研究计划局的“革命性假肢”计划展示了神经接口技术的潜力,使患者能够控制和感受假肢手臂和手,甚至在模拟中驾驶飞机。这些里程碑式的成就需要侵入式、长期植入的穿透电极阵列,而这些电极阵列与健全战士的应用或长期临床应用根本不兼容。非侵入式神经记录方法并不那么有效,在时间和空间分辨率、信噪比、深度穿透、便携性和成本方面受到严重限制。为了帮助弥补这些差距,约翰霍普金斯大学应用物理实验室 (APL) 的研究人员正在探索光学技术,通过快速光学信号表示的血液动力学特征或神经组织运动来记录神经活动的相关性。虽然这两种特征在记录神经活动的时空分辨率和深度方面有所不同,但它们为实现便携式、低成本、高性能的脑机接口提供了一条途径。如果成功的话,这项工作将有助于开创以思维速度进行计算的新时代。
激光焊接技术具有高精度、高灵活性和深度穿透等优越性能,引起了学术界和工业界的广泛关注。迄今为止,缺乏可重复性和稳定性仍被视为阻碍其更广泛应用的关键技术障碍,尤其是对于要求苛刻的高价值产品。克服这一艰巨挑战的一个重要方法是结合人工智能 (AI) 技术的现场监测,这已得到大量研究的探索。监测的主要目的是收集有关该过程的基本信息并提高对发生的复杂焊接现象的理解。本综述首先描述了动态 LBW 过程中的现场光学传感、行为表征和过程建模方面的正在进行的工作。然后,重点关注了光辐射技术,例如多光谱光电二极管、光谱仪、高温计和高速摄像机,用于观察激光物理现象,包括熔池、小孔和蒸汽羽流。特别是,讨论了先进的图像/信号处理技术和机器学习模型,以确定工艺参数、工艺特征和产品质量之间的相关性。最后,讨论了主要挑战和潜在解决方案,以深入了解金属基 LBW 工艺的工艺监控领域仍需实现的目标。这篇全面的评论旨在为那些寻求引入智能焊接功能以改善和控制焊接质量的人提供最新技术的参考。
通常建议对固定剂的摘要心脏灌注进行脑组织学的质量准备,从而确保组织中的快速和深度穿透以保留最脆弱的脑结构。尽管在麻醉和适当的镇痛下进行,但对于实验者而言,此过程很麻烦,并提出了道德问题。最近,基于先前牺牲动物,然后将固定剂注射到循环中,提出了替代方案。这些所谓的验尸灌注方案在理论上应确保组织固定的等效质量,而不会使活动物暴露于程序。在采用这种新方法之前,有必要验证样品质量等效,以确保科学结果的有效性。,我们通过心脏或验尸灌注对几种组织固定方案进行了平行比较,并测量了对轴突结构,树突状棘和线粒体形态的维持的影响。我们的结果表明,组织学参数显示出对所使用的灌注条件和固定剂的敏感性。For instance, axon fragmentation and altered mitochondrial morphology were observed in post-mortem perfusion groups.我们还确定固定条件对免疫染色具有可变影响,从而影响检测到的表达水平或模式。我们的结果是指导实验者选择最佳组织固定条件的指南,从而最大程度地减少了动物的痛苦,同时保证了获得的生物学结果的完整性。
光敏剂必须满足以下标准才被认为适用于任何一种光治疗方法:强红光或近红外 (NIR) 吸收,以允许光深度穿透生物组织,暗毒性可忽略不计,副作用少,但在光照下具有高细胞毒性,在生物介质中具有良好的溶解性和稳定性,优先在癌组织中积累,并具有合适的清除率。3 对于 PDT 而言,当考虑更典型的 II 型方法时,光敏剂需要具有高的三线态量子产率 (ΦT) 和随后的高单线态氧量子产率 (ΦΔ),10,11 而对于 PTT,光敏剂必须通过非辐射衰变途径促进有效的光热转换(图 1),以产生足够高的细胞温度升高(例如至 >45°C)来诱导细胞死亡。 12,13 多种类型的纳米材料和分子光敏剂已被用于两种类型的光疗法。14 – 17 虽然纳米材料已被证明是光疗法的有效光敏剂,但其相对有限的可调性、较差的批次间重现性、广泛的尺寸分布、形态依赖性反应和未知的长期生物学效应可能使分子光敏剂成为更具吸引力的解决方案。12,13
摘要:光被广泛应用于化学、生物学和医学、荧光成像、光遗传学、光激活基因编辑、光控免疫疗法和光化学疗法等治疗癌症和病毒感染的方法中。所有基于光的方法在活体生物组织中面临的一个关键挑战是光子的穿透性差,这主要是由于散射和吸收。这种限制通常需要侵入性操作,例如对组织进行物理切片、插入光纤和内窥镜,以及手术切除上覆组织(例如开颅手术)。为了应对这些挑战,我们的实验室开发了一种超声介导的血管内光源,利用聚焦超声的深层组织穿透性。我们利用了机械发光纳米传感器 (MLNT),它们是通过生物矿物启发的抑制溶解方法合成的机械发光材料的胶体纳米颗粒。这些 MLNT 可以通过静脉输送到血液循环中,并在超声焦点处局部发光。由于超声波具有深度穿透和快速时间动力学,我们已经证明这种方法可以在活体小鼠的不同器官中以毫秒精度在高深度产生按需和动态可编程的光发射模式。这种超声介导的血管内光源使我们能够在活体小鼠中进行非侵入式“声光遗传学”神经调节,以及激活同一只小鼠大脑不同脑区的全脑“扫描光遗传学”。在演讲结束时,我将介绍光子材料的进步如何促进下一代脑机接口的发展。