摘要。在本文中,我们使用最近提出的称为“深层音乐信息动力学”(DMID)的框架来探索音乐的深度神经模型的信息,通过将比特率减少应用于用于生成音乐表面的潜在表示。我们的方法是由人类齿轮的速率延伸理论的部分动机,该理论声称,为了处理感官信息的复杂性,某些信息在感知行为中必须丢失或丢弃。随着时间的流逝,有损失的编码会改变音乐结构表示不同级别的声音内部和跨声音形成的预期。此外,我们假设音乐机器学习系统的目标,甚至可能是人类的学习系统,它正在学习一种潜在的表示,该代表“解释”了音乐表面的大多数信息动态。通过对符号(MIDI)和声学(光谱)音乐表示的几个实验,使用额外的比特降低步骤来探索此AS-Sumption。我们的结果表明,在降低的速率编码之间可以找到更高的共同信息。DMID框架对于计算创意音乐系统的研究而言是显着的,因为它允许以一种能够实现的和计算的方式探索音乐数据潜在和表面水平的信息关系。
摘要:随着Alphago的突破,深入的强化学习已成为解决顺序决策问题的公认技术。尽管其声誉,但由于其试验和错误学习机制引起的数据效率低下,使得深层执行学习难以在广泛的领域应用。已经开发了许多用于样本有效的深层增强学习的方法,例如环境建模,经验转移和分布式修改,其中分布式深层掌握学习表明了其在各种应用中的潜力,例如人类计算机游戏和智能运输。在本文中,我们通过比较了经典的分布式深入强化学习方法并研究重要组成部分,以实现有效的分布式学习,从而涵盖了单个玩家单位分布的深度强化学习与最复杂的多个玩家分布深度强化学习。此外,我们回顾了重新发布的工具箱,这些工具箱有助于实现分布的深度强化学习,而无需对其非分发版本进行多次修改。通过分析其优势和劣势,开发和释放了多人多代理的多代理分布式深入强化学习工具箱,这在战争游戏中得到了进一步的验证,这是一个复杂的环境,显示了针对多个玩家的拟议工具盒的可用性,多个代理和多个代理在复杂的游戏下分配了深度强化学习。最后,我们试图指出挑战和未来的趋势,希望这份简短的评论可以为有兴趣分配深入强化学习感兴趣的研究人员提供指南或火花。
我们提出了一个深层生成框架,用于基于规范相关分析(CCA)的概率解释来学习多视图。该模型将潜在空间中的线性多视图层与深层生成网络作为观察模型结合在一起,将多个视图中的变异性分解为共享的潜在表示形式,该变异描述了一个描述变化的共同基础源和一组视图组件。为了近似潜在多视觉层的后验分布,基于概率CCA的解决方案开发了有效的变异推理过程。然后将模型推广到任意数量的视图。拟议的深度多视图模型证实了一个经验分析可以发现多个视图之间的微妙关系并恢复丰富的表示。
我们的团队的目的是实现深度地热产生基础设施。重点是整体利用概念,用于深度地热能,并具有所有地下数据和技术需求的整合。我们在所有计划阶段提供所有服务 - 从深度地热能的潜在和可行性研究到项目管理和项目实施。我们的任务范围包括地球科学地下数据的收集,整理和评估,必要的勘探测试工作的协调,技术和受保护的目标风险分析以及确定对地上能源消费者结构的要求。这种耦合方法一方面构成了技术能源输出潜力的确定国家的基础,另一方面,构成了植物工程概念的概述和实施。这包括地下植物组件的设计,包括钻孔系统的尺寸,热水电路的设计以及深层泵送技术的选择,以及表面地热植物,包括热转换器和热泵(如果需要)。进一步的任务是许可管理,敏感性和经济分析的准备(发热量的LOCH)和对工厂作战的监测(例如深度泵系统的条件监视)。此外,开发,协调和伴随的沟通概念和公众参与。
摘要:在过去的几年中,扩散模型(DMS)达到了前所未有的视觉质量水平。然而,对DM生成图像的检测几乎没有关注,这对于防止对我们社会的不利影响至关重要。相比之下,从法医角度对生成对抗网络(GAN)进行了广泛的研究。在这项工作中,我们采取自然的下一步来评估是否可以使用以前的方法来检测DMS生成的图像。我们的实验产生了两个关键发现:(1)最新的GAN检测器无法可靠地区分真实图像,但是(2)在DM生成的图像上重新训练它们几乎可以完美地检测,甚至可以显着将其推广到GAN。与特征空间分析一起,我们的结果导致了以下假设:DMS产生的可检测到的伪影较少,因此与gan相比更难检测到。造成这种情况的一个可能原因是在DM生成的图像中没有网格样频率伪像,这是已知的gan弱点。但是,我们做出了有趣的观察结果,即扩散模型倾向于低估高频,这是我们归因于学习目标。
视觉几何组在牛津大学开发了视觉几何组(VGG)结构。这是一个卷积神经网络(CNN),具有可靠的视觉识别性能。可以利用VGG进行深层检测功能提取,因为它可以捕获图像中的详细空间层次结构。它也有助于确定深层生成技术引入的伪影和不规则性。深度卷积层是指深度学习模型中使用的一种层,尤其是卷积神经网络(CNN),该卷积模型(CNN)旨在处理结构化的网格数据,例如图像。VGG架构中的深卷积层已被广泛用于深膜检测。vgg模型已经使用了诸如VGGFace(Ghazi和Ekenel,2016年)之类的方法,以提取深层操作带来的高级面部特征和斑点差异(Chang等人,2020)。
胰岛素输送在根据美国食品药品监督管理局(FDA)(FDA)使用时,标有适应症,禁忌症,警告和预防措施时,在某些情况下证明了外部连续皮下胰岛素输注泵的外部连续皮下胰岛素输注泵。有关医疗必要性临床覆盖标准,请参阅Interqual®CP:耐用的医疗设备,连续的葡萄糖监测器,胰岛素泵和自动化的胰岛素输送技术。单击此处查看标准标准。外部连续皮下胰岛素输注泵对于管理糖尿病患者的其他原因是需要强化胰岛素治疗的原因(每天至少3次胰岛素治疗)。示例包括但不限于胰腺手术后与囊性纤维化相关糖尿病,移植后糖尿病或糖尿病。由于没有足够的疗效证据,以下设备对于管理患有糖尿病的个体而不是医学上的设备:•可植入的胰岛素泵•不可编程的经透皮胰岛素输送系统(例如,V-go)连续葡萄糖持续葡萄糖监测(CGM)短期cgm(3-14天)的短期cgm(3-14天)的供应范围(3-14天)供应量。治理糖尿病患者所需的医学上所需的。
与人工智能相关的专利分布在广泛的技术领域,但我们发现它们集中在某些专利分类中。因此,使用 JP-NET 的“专利地图 -> 专利分类制表”功能,按照专利分类和关键词对已识别的出版物进行制表,并在每个级别(类/子类/主组/子组/部署符号/卷号)进行制表,以识别分布不均匀的区域。
[12] A. Siarohin、S. Lathuiliere、E. Sangineto 和 N. Sebe,“使用可变形 GAN 生成外观和姿势条件人体图像”,IEEE 模式分析机器智能汇刊,第 43 卷,第 4 期,第 1156-1171 页,2021 年 4 月。[13] L. Zhou、J. Chen、Y. Zhang、C. Su 和 MA James,“智能对称密钥加密的安全性分析和新模型”,计算机安全,第 80 卷,第 14-24 页,2019 年 1 月。[14] M. Coutinho、R. de Oliveira Albuquerque、F. Borges、LG Villalba 和 T.-H. Kim,“学习
主讲教师:Chittaranjan Hota 教授 (hota@hyderabad.bits-pilani.ac.in) 范围和目标 本课程从计算机科学的角度向学生介绍人工智能的基本概念和方法。人工智能关注一系列特定的问题,并开发了一套解决这些问题的特定技术。本课程的重点是研究开发智能程序所需的知识表示方法、推理和算法。人工智能不仅致力于构建智能实体,而且还允许理解它们。本课程将使学生了解如何使用经典的符号方法对计算机进行编程,使其以通常归因于人类“智能”的方式运行。人工智能目前涵盖了各种各样的子领域,如感知、逻辑推理、证明数学定理和诊断疾病等。人工智能使计算机工程师能够借助一套工具和方法系统化和自动化智力任务。本课程研究的方法可应用于人类智力活动的任何领域。作业部分将强调使用 C/C++、Python、R 等。学生将被要求在现实世界的问题解决中使用搜索策略、游戏程序(如国际象棋或井字游戏)、规划器、仅具有推理引擎的小型专家系统外壳、使用 TMS 或贝叶斯网络等模型在不确定性下进行推理的程序、自然语言理解程序以及使用联结主义模型(如神经网络)的机器学习领域的程序。教科书 T1 Stuart Russell 和 Peter Norvig,《人工智能:一种现代方法》,Pearson 教育,第 3 版,2009 年。参考书 R1 George F. Luger 人工智能:复杂问题解决的结构和策略,第四版,Pearson,2002 年。R2 DW Patterson,《人工智能与专家系统简介》,PHI,2002 年。 R4 Elaine Rich 和 Kevin Knight,《人工智能》,Tata McGraw Hill,第二版,2002 年。