EEP脑刺激(DBS)是一种公认的神经调节形式,用于治疗各种神经系统疾病。DBS在1996年获得了FDA的第一次批准,用于治疗与必需震颤和帕金森氏病(PD)相关的震颤,然后在2002年治疗其他CART-NAL运动症状。从那时起,DBS的适应症已迅速扩展到包括肌张力障碍,耐药性癫痫和精神病疾病。此外,治疗几乎没有禁忌症。较差的DBS候选人包括无法忍受手术或患有痴呆症或任何活跃的精神疾病的人。1对于DBS的作用机械性,尽管确切的过程在很大程度上是未知的,但已经假定了几种理论。从根本上讲,DBS向神经元电路提供直接的电刺激,该电路极限
视线(LOS)导航是一种光学导航技术,可利用从车载成像系统获得的可见天体的方向,以估算航天器的位置和速度。将方向馈送到估计过滤器中,其中它们与观察到的物体的实际位置匹配,该位置是从船上存储的胚层检索的。作为LOS导航代表了下一代深空航天器的一个真正有希望的选择,这项工作的目的是提供有关效果的新见解。首先,分析信息矩阵以显示航天器和观察到的行星之间的几何形状的影响。然后,使用Monte Carlo方法来研究测量误差的影响(范围从0.1到100 ARCSEC)和跟踪频率(从每天的四个观测值到每两天的观察范围)。通过两个指标对导航性能的影响进行了影响。首先是3D位置和速度均方根排出,一旦估计被认为是稳态的。第二个是收敛时间,它量化了估算到达稳态行为所需的时间。模拟基于一组四个行星,这些行星不遵循共同的以heliepentric动力学的速度,而是绕太阳旋转,并以相同的(无距离)角速度的角速度旋转。这种方法允许将方案依赖性行为与导航固有属性分开,因为在整个模拟过程中观察者和观察到的对象之间的相同几何形状是相同的相对几何形状。结果为下一代自主导航系统提供了有用的指南,既可以定义硬件要求和设计适当的导航策略。然后将注意事项应用于近地球小行星的任务方案,以定义导航策略和硬件要求。显示了航天器和行星之间相对角度的重要性。在单个球衣观察方案中,当航天器和行星的位置向量之间的角度接近无效的值时,估计误差会降低。在双行星观察方案中,当两个LOS方向之间的分离角接近90时,估计误差会降低。对性能的主要影响是由测量误差驱动的,当前技术被证明能够以几百公里的顺序提供位置误差,而较低的测量误差(0.1 ARCSEC)可能在100 km以下的位置误差。最后,可以证明跟踪频率在性能中起次要作用,并且只有在收敛时间明显地影响。2022 cospar。由Elsevier B.V.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
摘要。在本文中,我们使用最近提出的称为“深层音乐信息动力学”(DMID)的框架来探索音乐的深度神经模型的信息,通过将比特率减少应用于用于生成音乐表面的潜在表示。我们的方法是由人类齿轮的速率延伸理论的部分动机,该理论声称,为了处理感官信息的复杂性,某些信息在感知行为中必须丢失或丢弃。随着时间的流逝,有损失的编码会改变音乐结构表示不同级别的声音内部和跨声音形成的预期。此外,我们假设音乐机器学习系统的目标,甚至可能是人类的学习系统,它正在学习一种潜在的表示,该代表“解释”了音乐表面的大多数信息动态。通过对符号(MIDI)和声学(光谱)音乐表示的几个实验,使用额外的比特降低步骤来探索此AS-Sumption。我们的结果表明,在降低的速率编码之间可以找到更高的共同信息。DMID框架对于计算创意音乐系统的研究而言是显着的,因为它允许以一种能够实现的和计算的方式探索音乐数据潜在和表面水平的信息关系。
摘要:随着Alphago的突破,深入的强化学习已成为解决顺序决策问题的公认技术。尽管其声誉,但由于其试验和错误学习机制引起的数据效率低下,使得深层执行学习难以在广泛的领域应用。已经开发了许多用于样本有效的深层增强学习的方法,例如环境建模,经验转移和分布式修改,其中分布式深层掌握学习表明了其在各种应用中的潜力,例如人类计算机游戏和智能运输。在本文中,我们通过比较了经典的分布式深入强化学习方法并研究重要组成部分,以实现有效的分布式学习,从而涵盖了单个玩家单位分布的深度强化学习与最复杂的多个玩家分布深度强化学习。此外,我们回顾了重新发布的工具箱,这些工具箱有助于实现分布的深度强化学习,而无需对其非分发版本进行多次修改。通过分析其优势和劣势,开发和释放了多人多代理的多代理分布式深入强化学习工具箱,这在战争游戏中得到了进一步的验证,这是一个复杂的环境,显示了针对多个玩家的拟议工具盒的可用性,多个代理和多个代理在复杂的游戏下分配了深度强化学习。最后,我们试图指出挑战和未来的趋势,希望这份简短的评论可以为有兴趣分配深入强化学习感兴趣的研究人员提供指南或火花。
我们提出了一个深层生成框架,用于基于规范相关分析(CCA)的概率解释来学习多视图。该模型将潜在空间中的线性多视图层与深层生成网络作为观察模型结合在一起,将多个视图中的变异性分解为共享的潜在表示形式,该变异描述了一个描述变化的共同基础源和一组视图组件。为了近似潜在多视觉层的后验分布,基于概率CCA的解决方案开发了有效的变异推理过程。然后将模型推广到任意数量的视图。拟议的深度多视图模型证实了一个经验分析可以发现多个视图之间的微妙关系并恢复丰富的表示。
我们的团队的目的是实现深度地热产生基础设施。重点是整体利用概念,用于深度地热能,并具有所有地下数据和技术需求的整合。我们在所有计划阶段提供所有服务 - 从深度地热能的潜在和可行性研究到项目管理和项目实施。我们的任务范围包括地球科学地下数据的收集,整理和评估,必要的勘探测试工作的协调,技术和受保护的目标风险分析以及确定对地上能源消费者结构的要求。这种耦合方法一方面构成了技术能源输出潜力的确定国家的基础,另一方面,构成了植物工程概念的概述和实施。这包括地下植物组件的设计,包括钻孔系统的尺寸,热水电路的设计以及深层泵送技术的选择,以及表面地热植物,包括热转换器和热泵(如果需要)。进一步的任务是许可管理,敏感性和经济分析的准备(发热量的LOCH)和对工厂作战的监测(例如深度泵系统的条件监视)。此外,开发,协调和伴随的沟通概念和公众参与。
摘要:在过去的几年中,扩散模型(DMS)达到了前所未有的视觉质量水平。然而,对DM生成图像的检测几乎没有关注,这对于防止对我们社会的不利影响至关重要。相比之下,从法医角度对生成对抗网络(GAN)进行了广泛的研究。在这项工作中,我们采取自然的下一步来评估是否可以使用以前的方法来检测DMS生成的图像。我们的实验产生了两个关键发现:(1)最新的GAN检测器无法可靠地区分真实图像,但是(2)在DM生成的图像上重新训练它们几乎可以完美地检测,甚至可以显着将其推广到GAN。与特征空间分析一起,我们的结果导致了以下假设:DMS产生的可检测到的伪影较少,因此与gan相比更难检测到。造成这种情况的一个可能原因是在DM生成的图像中没有网格样频率伪像,这是已知的gan弱点。但是,我们做出了有趣的观察结果,即扩散模型倾向于低估高频,这是我们归因于学习目标。
视觉几何组在牛津大学开发了视觉几何组(VGG)结构。这是一个卷积神经网络(CNN),具有可靠的视觉识别性能。可以利用VGG进行深层检测功能提取,因为它可以捕获图像中的详细空间层次结构。它也有助于确定深层生成技术引入的伪影和不规则性。深度卷积层是指深度学习模型中使用的一种层,尤其是卷积神经网络(CNN),该卷积模型(CNN)旨在处理结构化的网格数据,例如图像。VGG架构中的深卷积层已被广泛用于深膜检测。vgg模型已经使用了诸如VGGFace(Ghazi和Ekenel,2016年)之类的方法,以提取深层操作带来的高级面部特征和斑点差异(Chang等人,2020)。
胰岛素输送在根据美国食品药品监督管理局(FDA)(FDA)使用时,标有适应症,禁忌症,警告和预防措施时,在某些情况下证明了外部连续皮下胰岛素输注泵的外部连续皮下胰岛素输注泵。有关医疗必要性临床覆盖标准,请参阅Interqual®CP:耐用的医疗设备,连续的葡萄糖监测器,胰岛素泵和自动化的胰岛素输送技术。单击此处查看标准标准。外部连续皮下胰岛素输注泵对于管理糖尿病患者的其他原因是需要强化胰岛素治疗的原因(每天至少3次胰岛素治疗)。示例包括但不限于胰腺手术后与囊性纤维化相关糖尿病,移植后糖尿病或糖尿病。由于没有足够的疗效证据,以下设备对于管理患有糖尿病的个体而不是医学上的设备:•可植入的胰岛素泵•不可编程的经透皮胰岛素输送系统(例如,V-go)连续葡萄糖持续葡萄糖监测(CGM)短期cgm(3-14天)的短期cgm(3-14天)的供应范围(3-14天)供应量。治理糖尿病患者所需的医学上所需的。
摘要以高氮利用效率(NUE)的谷物作物的开发是全球农业的优先事项。除了传统的植物育种和基因工程外,植物微生物组的使用还提供了另一种改善作物nue的方法。可以深入了解与多高粱线不同的细菌群落,设计了一个现场实验,比较了足够且缺乏氮(N)下的24种多样的高粱双色线。Amplicon sequencing and untargeted gas chromatography–mass spectrometry were used to characterize the bacterial communities and the root metabolome associated with sorghum genotypes varying in sensitivity to low N. We demonstrated that N stress and sorghum type (energy, sweet, and grain sorghum) significantly impacted the root-associated bacte rial communities and root metabolite composition of sorghum.我们发现高粱和细菌的丰富性和多样性之间存在正相关。高NUE线中的较大α多样性与主要细菌分类群假单胞菌的丰度降低有关。响应低N胁迫,在根代谢产物和根际细菌群落之间检测到了多个强相关性。这表明由于低N引起的高粱微生物组的变化与宿主植物的根代谢产物有关。综上所述,我们的发现表明,根代谢产物的宿主遗传调节在定义与根高粱基因型的根相关微生物组方面发挥了作用,而高粱基因型的NUE和对低N胁迫的耐受性有所不同。