要实现这一愿景,需要一个有利于美国商业增长的安全国际环境。美国太空部队 (USSF) 本身并不直接参与民用太空探索和开发,其职责主要集中在组织、培训和装备所需的部队,以支持作战指挥并确保美国及其盟友和合作伙伴不受限制地进入和使用太空。然而,太空运输和物流、电力、通信、导航和太空领域意识等活动对所有太空领域(民用、国家安全和商业)都具有双重用途价值。民用和商业最佳实践的发展可以形成负责任的行为规范,从而提高所有太空活动的国际稳定性和透明度。美国国务院、国防部、商务部、交通部、能源部和国土安全部在太空探索和开发中发挥的重要支持作用是美国采取全政府方式开展太空活动的主要原因之一。
要实现这一愿景,需要一个有利于美国商业增长的安全国际环境。美国太空军 (USSF) 本身并不直接参与民用太空探索和开发,其职责重点是组织、培训和装备所需的部队,以支持作战指挥并确保美国及其盟友和合作伙伴不受限制地进入和使用太空。然而,太空运输和物流、电力、通信、导航和太空领域意识等活动对所有太空领域都具有双重用途价值,包括民用、国家安全和商业。民用和商业最佳实践的发展可以形成负责任的行为规范,从而提高所有太空活动的国际稳定性和透明度。美国国务院、国防部、商务部、交通部、能源部和国土安全部在太空探索和开发中发挥的重要支持作用是美国采取全政府方式开展太空活动的主要原因之一。
摘要 核热推进 (NTP) 使全新类型的深空科学任务能够产生科学回报,而在大多数情况下,传统架构根本无法实现这些回报。NTP 系统可以大大缩短行星际旅行时间,提供大约 2-3 倍(或更多)传统化学推进系统所能提供的质量,或提供这些优势的组合以进一步提高科学回报。目前 NASA 和 DoD 赞助的 NTP 系统计划将使用原型和飞行演示发动机来验证设计,从而使该技术成熟。这些原型发动机将在正确的推力范围内发挥性能,从而允许用作低风险推进级,支持高回报的深空科学任务。此外,与高浓缩铀 (HEU) 燃料相比,使用低浓缩铀 (LEU) 燃料可降低发动机开发、鉴定、验收和发射的成本,并降低与扩散管理相关的风险。
美国宇航局的星光计划和突破摄星计划概念化了通过定向能驱动的小型相对论航天器进行快速星际旅行。这一过程与传统的太空旅行截然不同,用小型、快速、廉价和易碎的航天器取代大型和缓慢的航天器。这些晶片卫星的主要目标是在深空旅程中收集有用的图像。我们介绍并解决了伴随这一概念的一些主要问题。首先,我们需要一个物体检测系统,可以检测我们从未见过的行星,其中一些行星包含我们可能甚至不知道在宇宙中存在的特征。其次,一旦我们有了系外行星的图像,我们就需要一种方法来拍摄这些图像并按重要性对它们进行排序。设备故障,数据速率很慢,因此我们需要一种方法来确保对人类最重要的图像是优先进行数据传输的图像。最后,机载能量最小,必须节约和谨慎使用。不应错过任何系外行星图像,但错误地使用能量会造成损害。我们引入了基于模拟器的方法,利用人工智能(主要是计算机视觉)来解决这三个问题。我们的结果证实,模拟器提供了极其丰富的训练环境,远超真实图像,可用于训练模型,以研究人类尚未观察到的特征。我们还表明,模拟器提供的沉浸式和适应性环境与深度学习相结合,让我们能够以一种难以置信的方式导航和节省能源。
美国宇航局喷气推进实验室是一家世界知名的机构,以其在深空网络上的工作而闻名,该网络负责处理行星际航天器任务,并将遥测数据与太空平台和地面跟踪站连接起来。先进且高度可靠的架构对其工作至关重要。动态系统一直是 JPL 的长期合作伙伴,也是该实验室成功不可或缺的一部分。
简介 有人认为,继互联网之后,工业向太空迁移是下一个重大举措。深空航行/利用/商业化/殖民化正在迅速从人类负担得起的长期不安全、长期安全的东西负担不起的状况,转变为既负担得起又安全。这是由于一系列先进/革命性的技术大大提高了能力、降低了成本,从而确保了安全(参考文献 1-6)。太空商业化,现在是地球同步轨道及以下,每年接近 3500 亿美元的全球产业,随着深空商业化的出现,预计将发展成为数万亿美元的经济引擎。商业实体实时开发可重复使用的太空进入火箭,是深空操作这一假定转变的主要初始推动因素。这似乎将低地球轨道 (LEO) 接入成本降低了 14 倍。随着机器人/人工智能 (AI) 取代人类及其相关的运营成本,未来还将实现更大的降低(参考文献 7 和 8)。更便宜的太空进入被认为是国家空间协会空间发展路线图中要解决的首要问题。低地球轨道进入的历史成本水平长期以来一直是商业深空发展的主要抑制因素,对于地球静止轨道及以下的一些活动而言,这是当前商业空间的领域。第二组真正具有商业深空支持作用的技术是强大的协同组合,可实现信息技术、计算、机器人、人工智能、纳米以及现在的量子和能量学革命的大规模小型化、低成本和增强能力,以及人类健康和基于生物的空间原位资源利用 (ISRU)、合成生物学等(参考文献 9、10)。从历史上看,涉及人类的太空任务成本比机器人活动高出 500 倍左右。展望未来,自主机器人有望在接近人类的水平上运行(参考文献 11),除人类殖民外,还将降低人类在太空存在的成本和对深空商业化活动的运行要求。
成功。然而,我们从仪器收集观测数据的能力和将这些观测数据传回地球的能力之间存在着根本的不平衡。下行链路带宽受 1 r 2 关系支配,随着航天器进一步向太阳系外移动,下行链路带宽会迅速减少,但仪器能力却不会下降。这是太空探索的第二个专制方程,仅次于著名的火箭方程,也是太阳系科学发现的长期问题:我们身处地球,我们需要有关“外面”的情况的数据,以便为我们的仪器定位提供信息,设计我们的任务目标,并总体上做出我们的发现。尽管有其他因素,但这种数据密集型过程导致对外行星和海洋世界的任务节奏较低,并且由于每年的数据回报低于地球、月球或火星任务等而加剧了这种情况。
该项目已获得第二年的资助。第二年,我们正与 RotoSub 合作,基于现有的 CQ 风扇开发飞行风扇系统。目的是对这些风扇进行认证和试飞,作为技术演示,它们将取代国际空间站机组人员宿舍中现有的两个 CQ 风扇。未来的开发将包括修改 CQ 风扇叶片设计,以更好地优化这项技术,并开发更坚固的非铁风扇外壳,以提高耐用性。
地理位置分散,包括新墨西哥州索科罗 (Det 1)、英属印度洋领地 (BIOT) 迭戈加西亚 (Det 2) 和夏威夷毛伊岛 (Det 3)。每个 Det 都配备三台光学望远镜(在整个 PWS 中称为光学传感器)。第 21 作战大队 (21 OG) 位于科罗拉多州彼得森空军基地 (AFB),通过位于佛罗里达州埃格林空军基地的第 20 空间控制中队 (20 SPCS) 的职能指挥官负责所有 GEODSS Det。GEODSS 系统通过探测和监视深空卫星来支持美国战略司令部 (USSTRATCOM) 和战区作战人员的需求。该系统探测、跟踪、识别和报告望远镜视野范围内地球轨道上所有深空人造物体。GEODSS Det 使用三台 1 米望远镜执行任务,每台望远镜的视野为 1.68 度;低光照水平、电光相机;以及高速计算机。这些光学传感器可检测从太空物体反射的太阳光。任务操作在民用日落和日出之间进行。卫星信息提供给加利福尼亚州范登堡空军基地的联合太空作战中心和第 18 太空控制中队 (JspOC/18 SPCS)。