创建“南亚太空联盟”,利用区域合作扩大印度的太空影响力。实施“太空外交倡议”,利用太空能力促进国际发展和灾害管理。积极参与制定国际太空法律和政策,确保印度的利益得到代表。加强太空基础设施和设施:在东海岸建设更多太空港,提高发射能力和灵活性。在全国范围内建立“微型太空中心”网络,用于测试、组装和专业研究。创建一个拥有多个地面站的最先进的深空网络,以增强深空任务能力。开发“国家太空云”,高效存储、处理和分发天基信息。加强国内供应链:启动“航天部件本土化任务”,到2030年实现关键部件的最大程度本土化。
Iris 2.2 版是一款兼容立方体卫星/小型卫星的转发器,由美国国家航空航天局 (NASA) 喷气推进实验室 (JPL) 开发,是一种体积小、质量轻、功耗低、成本低的深空软件/固件定义电信子系统。Iris 是一款深空转发器,采用 COTS 级组件,用于 NPR 7120.8 技术演示和 D 类太空飞行项目。Iris V2.2 的特点包括体积为 0.5 U,质量为 1.1 kg(包括 LNA 和 SSPA),在 3.8 W 射频输出(仅用于接收的 10.3 W DC 输入)下完全转发时功耗为 34 W DC,并且能够与 NASA 的深空网络 (DSN) 在 X 波段频率(7.2 GHz 上行链路、8.4 GHz 下行链路)上进行互操作,用于指挥、遥测和导航。
首字母缩略词 .cvs Excel codex ⁰ 度 < 小于 % 百分比 ABC Artemis 大本营 ACES 学院颜色编码系统 ANOVA 方差分析 CEL 概念探索实验室 cm 厘米 conops 作战概念 deg 度 DEM 数字环境模型 DOUG 动态机载无处不在的图形 DRATS 沙漠研究和技术研究 DSN 深空网络 DTE 直接对地 EDGE 探索图形 EHP 美国宇航局的舱外活动和人类地面机动计划 ESDMD 探索系统发展任务理事会 EVA 舱外活动 F ANOVA F 值 FOD 异物碎片 FOV 视场 fps 每秒帧数 GUNNS 通用节点网络求解器软件 HAB 栖息地 HDR 高数据速率 HITL 人在回路 hh:mm:ss 小时、分钟、秒 IES 照明工程学会 IMU 惯性测量单元 ISRU 现场资源利用单元 JEOD 约翰逊航天中心工程轨道动力学集团 JSC 约翰逊航天中心 kg 千克 km 公里 kph 公里每小时 千瓦 千瓦时 千瓦每小时 激光雷达 光增强探测与测距
*giorgio.saita@argotecgroup.com 简介:2029 年 4 月,阿波菲斯小行星将进行一次历史性的飞掠地球,距离地球约 31300 公里。这一独特场景为我们提供了从质量、密度、形状、旋转状态、成分和热惯性方面描述小行星特征的机会。此外,在阿波菲斯接近地球期间以及飞掠地球后对其进行测绘,将使我们能够获取和比较相遇前后的数据,从而加深我们对天体之间引力远程相互作用的理解。在距离相遇仅剩五年的时间里,这项任务将展示 SmallSat 对潜在危险 NEO(近地天体)的快速响应。该任务属于行星防御计划的一部分,该计划被确定为 NASA 最新行星科学十年调查中的优先事项。本摘要中介绍的任务名为 ATENA (近地天体阿波菲斯先进技术探索),源自意大利空间机构 ASI (Agenzia Spaziale Italiana) ARGOTEC 和 NASA/GSFC (戈达德太空飞行中心) 的国际合作。在此背景下,ASI 将协调国际联盟并管理科学调查。戈达德太空飞行中心将执行轨迹和任务分析,支持科学调查,提供光谱仪 BIRCHES,并管理深空网络 (DSN) 的支持。ARGOTEC 将开发航天器,领导所有有效载荷的整合,并管理任务的执行和运行。这个由意大利牵头的任务 ATENA 旨在优化数据生成,以配合戈达德太空飞行中心运营的 OSIRIS-APEX,后者将在阿波菲斯接近行星最接近时对其进行观测。
2024 年 10 月 21 日——马德里深空通信综合体 (MDSCC) 本周一纪念了一件大事。今年是 1964 年 1 月 29 日 60 周年,当时西班牙、美国政府、INTA 和 NASA 首次签署了西班牙综合设施运营和维护合同。今天,位于罗夫莱多德查韦拉的太空综合体在西班牙和美国当局的出席下庆祝了这一重要里程碑。MDSCC 的建设始于 1964 年 8 月,但直到第二年,随着第一根直径为 26 米的天线的完工,它才开始运行。该设施在创纪录的时间内完工,因为它的全面可操作性对于接收来自水手四号任务的数据至关重要,该任务捕捉到了另一颗行星(火星)的第一张图像。事实上,MDSCC 是深空网络的三个全球通信中心之一,另外两个是位于澳大利亚堪培拉和加利福尼亚州戈德斯通的通信中心。罗夫莱多航天中心负责跟踪、控制和遥测各种航天任务,例如用于研究木星和土星的卡西尼-惠更斯号、用于研究 67P/丘留莫夫-格拉西缅科彗星的罗塞塔号、用于探索太阳系边界的航海者 1 号和 2 号以及新视野号,以及用于在红外光下观察天空的詹姆斯·韦伯太空望远镜。这次会议的目的不仅是为了庆祝航天中心这些年来取得的成功和可操作性,也是为了重申西班牙和美国、INTA 和 NASA 在未来 60 年的合作,目的是通过未来的任务继续扩大我们对太空的了解。这些任务包括阿尔特弥斯号,它
太空自由空间光通信 (FSOC),或称激光通信,在带宽、尺寸、重量、功耗节省以及不受管制的频谱方面,比射频 (RF) 通信具有关键优势。与 RF 通信相比,理论和演示的激光通信系统在 SWaP 相似或相同的情况下,数据速率更高。新的太空网络架构,例如 SpaceX 和 Telesat 等公司目前正在部署的宽带星座,利用光学卫星间链路来提高系统总吞吐量并减少地面站数量,从而降低整体系统成本。除了 LEO 之外,Artemis 计划基础设施还包括猎户座太空舱和地球之间的光通信中继,最终计划扩展到月球轨道器以实现连续表面覆盖。尽管性能优势明显且在各个应用中的采用率不断提高,但最先进的 RF 通信系统目前的表现优于激光通信系统,部分原因是光通信系统无法支持多个同时链路。频率重用、访问方法和动态波束形成等技术使 RF 通信系统能够绕过带宽限制并与网络内的其他节点(例如多个地面站、用户终端等)建立同时链接。这项工作着眼于将此功能扩展到激光通信系统,评估支持多个同时光链路所需的技术,并量化网络配置中多用户激光通信的影响。我们开发了一个模型来模拟这种系统的性能,并根据现有模型和数据对其进行验证。然后将该模型应用于 LEO 和深空网络场景,该场景分析不同的访问方法、网络配置和终端技术,例如光纤放大器与光子集成电路。我们进行权衡研究以确定所提方法的局限性和约束。然后,我们根据关键性能参数为每种场景提出架构建议。例如,我们发现对于 LEO 情况,一组四颗 6U 立方体卫星可以在网状网络配置中通过波分多址实现 12 Gbps 的总系统吞吐量。此外,通过使用基于光子的收发器而不是基于光纤的收发器,可以额外节省约 2.5 倍的质量。
地月自主定位系统技术操作和导航实验 (CAPSTONE) 任务由 NASA 与科罗拉多州威斯敏斯特的 Advanced Space, LLC 合作开发。这项技术演示任务是月球周围近直线晕轨道 (NHRO) 操作的探路者。NHRO(近月点 = 3,200 公里;远月点 = 70,000 公里)是 NASA 的 Artemis Gateway 的预定轨道,Artemis Gateway 是一个计划在月球轨道上运行的小型载人空间站。CAPSTONE 任务将验证模拟并确认 Gateway 的运行计划,同时验证 Gateway 动力和推进元件的导航和驻留要求的性能。因此,该任务将为 NASA、商业和国际任务提供在苛刻的轨道范围内运行的运行经验。CAPSTONE 任务由 Terran Orbital Corporation 开发、集成和测试的 12 单元 (U)+ CubeSat 组成,它携带一个有效载荷通信系统,能够与 NASA 的月球勘测轨道器 (LRO) 进行交联测距。CAPSTONE 包含一个芯片级原子钟 (CSAC),用于与 NASA 的深空网络进行单向测距实验,一个专用的有效载荷飞行计算机用于软件演示,以及一个摄像头。此次发射由 NASA 的发射服务计划协调,由 Rocket Lab 在其 Electron 运载火箭上使用其 Photon 上面级部署 CAPSTONE 航天器。该任务于 2022 年 6 月 28 日发射。CAPSTONE 航天器从光子级部署,经历了大约 4 个月的高度燃料效率转移阶段,于 2022 年 11 月 13 日进入 NRHO,进行为期六个月的主要任务阶段。该任务目前处于为期十二个月的技术增强运营阶段。CAPSTONE 技术演示任务由 Advanced Space, LLC 领导。航天器开发和任务运营由加利福尼亚州欧文市的 Terran Orbital Corporation 进行。CAPSTONE 任务的显著成就包括展示 NHRO 的可达性;验证 NHRO 环境中的关键操作概念;为未来月球运营的商业支持奠定基础;并加速实现地月自主定位系统 (CAPS) 提供的点对点导航功能。CAPSTONE 任务由 NASA 的小型航天器技术 (SST) 计划资助,该计划是 NASA 空间技术任务理事会的几个计划之一。该计划的目的是开发和演示增强和扩展小型航天器能力的技术,特别注重通过使用小型航天器实现新的任务架构,扩大小型航天器到达新目的地的范围,并增强未来
美国宇航局的太空通信和导航 (SCaN) 计划是美国宇航局太空行动任务理事会 (SOMD) 下属的一个组织。SCaN 是 NASA 所有太空通信和导航活动的项目办公室,负责近太空网络 (NSN) 和深空网络 (DSN) 提供的地面和太空设施、设备和服务的运营、维护和维持。美国宇航局的 SCaN 网络在任务从发射到寿命结束和/或脱离轨道的整个运行生命周期内为太阳系的任何地方提供太空通信和导航服务。对于在到达深空目的地之前需要近太空服务的任务,或者在使用两个网络可能有利的地区运行的任务,例如在月球或太阳-地球拉格朗日点 1 (SE-L1) 和太阳-地球拉格朗日点 2 (SE-L2),每个网络都需要单独的任务集成过程。但是,SCaN 人员在跨网络合作方面有着悠久的历史,NSN 和 DSN 将协调支持使用这两个网络的任务。这种协调包括共享运营规划、寻找通用接口和共享任何测试的结果。DSN 由使用超大孔径(34 米和 70 米)天线的地面站组成,专注于为地球静止轨道 (GEO) 以外的任务提供支持。DSN 主要支持行星任务和距离地球 200 万公里以外的任务,这些区域被称为 B 类 - 深空。DSN 设施战略性地分布在三个地理位置:(1) 加利福尼亚州戈德斯通、(2) 西班牙马德里和 (3) 澳大利亚堪培拉。这些设施共同提供深空任务轨迹的近乎全天候覆盖。NSN 是近太空的主要服务提供商,因此更昂贵的 DSN 资产可以免费为深空任务提供 C&N 服务。本文档介绍了 SCaN 的近太空网络服务,该服务由 NASA 的戈达德太空飞行中心 (GSFC) 管理,并通过商业提供商和政府拥有的系统混合提供。本文档不涵盖此处提供的高级描述以外的 DSN。 DSN 的管理和运营由位于加利福尼亚州帕萨迪纳的喷气推进实验室 (JPL) 负责。本文档未包含有关 DSN 服务和功能的进一步描述。如需更多信息或购买 DSN 服务,请参阅 DSN 用户指南并联系 SCaN 的任务承诺办公室 (MCO)。