迫切需要强调新的方法来治疗和增强药物使用障碍(SUD)治疗,特别是对于缺乏药物选择的物质。非药理学方法是感兴趣的,特别是对于那些无法忍受药物或反应不足的个体。深脑刺激(DBS)是神经调节的侵入性形式之一,是一种手术程序,将电极植入特定的大脑区域并通过植入的脉冲发生器刺激。已经曾是食品药品监督管理局(Food and Drug Administration),用于帕金森氏病,基本震颤,肌张力障碍和强迫症(OCD)。DBS在临床研究中对抑郁症,图雷特氏病,饮食失调,创伤性脑损伤,阿尔茨海默氏病和慢性疼痛等疾病的临床研究表现出了希望。刺激参数是根据靶向大脑区域和患者反应进行编程的。dbs也被探讨为SUD的潜在方法。[18,46,47,50]
丘脑下核(STN)β触发的自适应深脑刺激(ADB)已被证明可提供与常规连续DBS(CDB)相当的临床改进,其能量较少,而能量较少,而刺激较少诱导的副作用。但是,几个问题仍未得到解决。首先,在自愿运动之前和期间,STN Beta谱带功率的逻辑逻辑降低正常。ADBS系统将在帕金森氏病患者运动过程中减少或停止刺激,因此与CDB相比可能损害运动性能。第二,在以前的大多数ADB研究中,Beta功率在400毫秒的时间段内进行了平滑和估计,但是较短的平滑周期可能具有更大的优势,即对Beta功率的变化更加站点,这可以增强运动性能。在这项研究中,我们通过使用标准的400毫秒和较短的200毫秒平滑窗口来评估STNβ触发的ADB的有效性来解决这两个问题。帕金森氏病的13人的结果表明,减少量化β的平滑窗口的确会导致β爆发持续时间缩短,这是通过增加β爆发的数量短于200 ms,并且更频繁地打开/关闭刺激剂,但没有造成的效果。与没有DBS相比,ADB和CDB都在同等程度上提高了运动性能。此外,与没有DBS相比,ADB显着地证明是震颤,但不如CDB。二级分析表明,β功率下降和GAM MA功率在预测更快的运动速度方面存在独立的影响,而Beta事件的减少相关的DENCHRONIANINID(ERD)预先固定了更快的运动启动。CDB抑制了Beta和伽玛的抑制作用和伽玛,而在CDB和ADB中,Beta ERD与无DBS相比降低到相似的水平,这共同解释了CDB和ADB期间CDBS运动的SIMI LAR性能提高。这些结果表明,受STN触发的ADB有效地改善了帕金森氏病患者的运动过程中运动性能,而平滑窗口的缩短不会导致任何额外的行为益处。为帕金森氏病开发ADBS系统时,可能没有必要跟踪非常快的beta dy namics;结合β,伽玛和运动解码的信息可能会更有益于最佳治疗震颤所需的其他生物标记。
丘脑下核(STN)β触发的自适应深脑刺激(ADB)已被证明可提供与常规连续DBS(CDB)相当的临床改进,其能量较少,而能量较少,而刺激较少诱导的副作用。但是,几个问题仍未得到解决。首先,在自愿运动之前和期间,STN Beta谱带功率的逻辑逻辑降低正常。ADBS系统将在帕金森氏病患者运动过程中减少或停止刺激,因此与CDB相比可能损害运动性能。第二,在以前的大多数ADB研究中,Beta功率在400毫秒的时间段内进行了平滑和估计,但是较短的平滑周期可能具有更大的优势,即对Beta功率的变化更加站点,这可以增强运动性能。在这项研究中,我们通过使用标准的400毫秒和较短的200毫秒平滑窗口来评估STNβ触发的ADB的有效性来解决这两个问题。帕金森氏病的13人的结果表明,减少量化β的平滑窗口的确会导致β爆发持续时间缩短,这是通过增加β爆发的数量短于200 ms,并且更频繁地打开/关闭刺激剂,但没有造成的效果。与没有DBS相比,ADB和CDB都在同等程度上提高了运动性能。此外,与没有DBS相比,ADB显着地证明是震颤,但不如CDB。二级分析表明,β功率下降和GAM MA功率在预测更快的运动速度方面存在独立的影响,而Beta事件的减少相关的DENCHRONIANINID(ERD)预先固定了更快的运动启动。CDB抑制了Beta和伽玛的抑制作用和伽玛,而在CDB和ADB中,Beta ERD与无DBS相比降低到相似的水平,这共同解释了CDB和ADB期间CDBS运动的SIMI LAR性能提高。这些结果表明,受STN触发的ADB有效地改善了帕金森氏病患者的运动过程中运动性能,而平滑窗口的缩短不会导致任何额外的行为益处。为帕金森氏病开发ADBS系统时,可能没有必要跟踪非常快的beta dy namics;结合β,伽玛和运动解码的信息可能会更有益于最佳治疗震颤所需的其他生物标记。
在手术史上,成功的例子很大,在全球范围内像DBS发生的事情一样快,广泛。在临床临床介绍(神经外科医生)和Pollack(Neurolo-Gesta)临床介绍后约30年,现在在全球范围内大约有25万名患者。手术已变得越来越严格,更安全,更有效,更具耐受性,源自技术创新(电极和电池),大脑形象的每种改善(磁共振成像)的每种改善,更大的解剖学和功能知识,对熟食(热点,感应)和技术的改善(在技术手术中的改善(手术)(手术)(始终是一般anneshes),但始终是一般的,但必然是一个团队,暗示包括多个知识领域(神经病学,神经外科,神经放射学,神经心理学,精神病学,护理,物理医学和康复)。在葡萄牙,我们始终遵循各种技术发展,这些发展可以更好地控制帕金森氏病的症状,即可充电电池(2009年)刺激方向性(2016年),评估总激活量(2019)和目标电气活动的注册(2020年),即使在欧洲的一些中心也是在欧洲中心。DBS具有最小的脑组织入侵(纠正功能而不是结构),安全性(低并发症率),公认指示的有效性,可逆性(不会导致任何大脑结构的损伤只是消失了效果)和长期的刺激性脑膜病变。
方法:在先前的受试者内部,横断面研究中,我们评估了PD患者对Sleep acroarchitectural特征的低(60 Hz)和常规高(≥130Hz)频率STN DBS设置的影响。在本期,探索性分析中,我们进行了多个核能(PSG)衍生的定量脑电图(QEEG)评估,其中15名患有PD的人在研究参与前13.5个月接受了STN DBS治疗的PD患者。14名参与者的单侧DB和1个具有双侧DBS。在三个不同的PSG连续晚上,在三种不同的DBS条件下评估了参与者:DBS OFF,DBS低频(60 Hz)和DBS高频(≥130Hz)。这项研究的主要目的是使用反复测量方差分析来研究三个DBS条件下睡眠纺锤体密度的变化。此外,我们研究了与睡眠QEEG功能相关的各种次要结果。对于所有参与者,PSG派生的EEG数据进行了精心的手动检查,排除了受运动伪像影响的任何段。在伪影排斥反应后,对额叶和中心线进行了睡眠QEEG分析。措施包括慢波(SW)和主轴密度和形态特征,SW主轴相位振幅耦合以及在非快速眼运动(NREM)睡眠期间的光谱功率分析。
深脑刺激(DBS)是一种有效的治疗方法,可用于患有其他耐药性精神疾病(包括强迫症)的患者。皮质 - 纹状体回路的调节已被认为是一种作用机理。为了获得机理洞察力,我们监测了小鼠模型中皮质 - 纹状体区域中的神经元活性,以实现强迫性行为,同时系统地改变了内囊DBS的临床上与临床相关的参数。dbs对大脑和行为均显示出剂量依赖性的作用:招募了越来越平衡的激发和抑制性的数量,散布在整个皮质纹状体区域,而过度的修饰却降低了。这种神经元的募集并没有改变基本的大脑功能,例如静息状态活动,并且仅发生在清醒的动物中,表明对网络活动的依赖性。除了这些广泛的效果外,我们还观察到内侧轨道额皮层在治疗结果中的特定参与,这是通过光学刺激证实的。一起,我们的发现提供了机械洞察力,即DB如何对强迫行为发挥治疗作用。
。cc-by 4.0未经同行评审获得的未获得的国际许可证是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2023年7月15日。; https://doi.org/10.1101/2023.07.14.549076 doi:biorxiv Preprint
GPT系列的成功证明,GPT可以从序列中提取一般信息,从而使所有下游任务受益。这促使我们使用预训练的模型来探索DNA序列中的隐藏信息。但是,DNA序列分析中的数据和任务需求是复杂性和多样性,因为DNA相关数据包括不同类型的信息,例如序列,表达水平等,而目前尚无专门为这些特征设计的模型。在此,我们提出了DNAGPT,这是一种从9种的超过100亿个碱基对进行预训练的广义基础模型,可以对任何DNA序列分析任务进行微调。我们的模型可以同时处理或输出DNA序列和数字。此外,我们独特的令牌设计使用户可以根据自己的任务要求设计提示,从而适用于任何类型的任务。我们已经评估了我们的分类,回归和生成任务的模型。我们证明了DNAGPT受益于预训练,因此可以为任何下游任务带来绩效提高。我们的模型不仅是基因组分析领域的新尝试,而且为在生物学中应用基础模型提供了新的方向。
3技术联系人:xiangwu@stanford.edu 4铅触点 *通信 *通信:guosongh@stanford.edu摘要,我们提供了一项协议,用于在第二个近边界(NIR-II)中使用通过SCALP宽阔的宽场照明自由表现的小鼠的深度脑刺激协议。我们首先描述了TRPV1的注射(瞬态受体潜在阳离子通道亚家族v成员1)表达病毒和大脑刺激的大分子红外红外纳米传递剂(思维)。然后,我们在条件的位置偏好测试中详细介绍NIR-II神经调节,然后进行免疫组织化学研究。这种方法对于涉及多个受试者的社交相互作用实验中的无链链深脑刺激特别有用。有关此协议使用和执行的完整详细信息,请参阅(Wu等,2022)。在开始神经调节技术之前,是解剖复杂神经回路和潜在治疗神经系统疾病的强大工具(Fenno等,2011; Jiang等,2022; Montgomery等,2015; Tsai等,2009)。但是,当前流行的电气和光学神经调节技术需要刺激电极或光纤的侵入性植入,这不可避免地会导致急性脑损伤,慢性神经胶质性和物理绑扎。尽管新型神经调节技术的最新进展(Chen等,2015; Chen,2018; Kim等,2013; Wu等,2019),但没有现有的光学方法可以消除脑植入物和头部束缚。
摘要。背景:帕金森氏病(PD)患者中丘脑深脑刺激(STN DBS)的标准化筛查对于确定资格至关重要,但其预测合格患者术后结局的实用性尚无定论。尚不清楚可穿戴数据是否可以促进此目标。目的:评估DBS筛选中纳入的通用组件的效用,并以可穿戴的传感器互补,以预测STN DBS手术后一年后的运动结果和生活质量(QOL)。方法:连续的患者被包括在两个DBS中心的乐观主义人群研究中。标准化评估包括术前左旋多巴挑战测试(LCT),以及有关QOL和非运动症状的问卷,包括认知,精神症状,冲动,自主症状和睡眠问题。此外,还使用了门槛可穿戴传感器(帕金森·伊氏(PKG))。术后评估相似,还包括刺激挑战测试,以确定DBS对运动功能的影响。结果:包括八十三名患者(中位数(四分位数)63岁(56-68)岁,女性为36%)。med-off(刺激)运动严重程度恶化,表明疾病的进展,但患者在(刺激)运动功能,运动浮动,QOL和大多数非运动域的疾病方面有了显着改善。运动结果未通过术前测试预测,包括LCT或PKG的协变量。在多元模型中,术后QOL预测了更好的术前QOL,较低的年龄和术前冲动得分。结论:来自DBS筛选的数据(包括可穿戴数据)不能预测一年的术后运动结果。DBS QOL似乎主要是由非运动症状驱动的,而不是由运动改善驱动。