核酸纯含阳离子和富集对于在遗传pro,临床试验和食品安全方面进行可靠的研究至关重要。1 - 3个核酸提取是一个复杂的过程,因为细胞中的蛋白质和多糖干扰核酸的纯阳离子,并且酶的高浓度也会降解核酸。4常规DNA puri puri cation方法(例如苯酚 - 氯仿液体 - 液体提取)需要广泛使用不环保的有机溶剂。5个商业化的DNA提取试剂盒需要重复洗脱和离心步骤,这可能导致DNA丢失。因此,开发新的DNA puri cation and Sepapairation技术非常重要,这些技术经济,有效,环保且易于操作是非常重要的。水性两相系统(ATPS)是温和的,生物相容性的,并且环保的液体 - 液体提取,分离和纯化技术,这些技术已广泛用于生物技术应用。6,7聚合物/聚合物,聚合物/盐和小分子醇/盐成分用于开发
考虑用于染色不同纺织材料的过程消耗的大量水量,持续的扩展集中在设计更可持续的染色方法。分散染料的染料不溶于水,因此经常使用有毒的染色辅助(载体和分散剂)溶解它们。在当前的工作中,以双重方式使用了基于甜菜碱的天然深层溶剂(NADE):确保减少产生的废水并消除对环境不友好的辅助设备(例如分散剂和载体)的需求。染色实验。涉及常规方法,在添加载体,分散剂和乙酸的情况下,在100°C下进行染色45分钟。相比之下,基于NADE的方法涉及织物染色,以70:30的比例为nades和蒸馏水的混合物。对于两种方法,pH值4的pH值保持相同。染色效率。基于NADE的方法恶魔均取得了更好的整体性能,而不会影响聚酯织物的拉伸强度和休息时伸长率。基于获得的结果,基于甜菜碱的nades可以用作聚酯染色的“绿色”培养基。
发现地球上的大多数原核生物多样性和生物量都属于深度地下,需要改善对可居住性的定义,这应该考虑在太阳系及其他地区的其他行星和卫星中存在黑暗生物圈。在一些无水表面的冰山上发现了“室内液态水世界”,这引起了广泛的天文学兴趣,但零星提到了岩石行星在最近的可居住性审查中的深层地下,在最近的可居住性审查中,呼吁在有方法上努力,以开发足够的科学知识和技术,包括我们的可居住能力,包括我们的黑暗生物学评估。在这篇综述中,我们分析了最新的发展以及用来表征地球大陆硬岩深地下所采用的方法,以准备对火星假定的黑暗生物圈的未来探索,并在评估行星居住性时强调其重要性。
环境问题激发了人们寻求更可持续和更安全的溶剂,旨在取代工业过程中的侵略性和有害化学产品。响应这种需求,深层溶剂(DES)已成为离子液体的逐步进化。这些创新的溶剂是由两种或多种化学化合物的协同组合引起的,当在特定的摩尔级分中混合时,熔点显着降低,最终在室温下实现了液态。近年来,一种自然变体称为天然深色溶剂(NADE)已获得突出。这种环境友好的替代方法是通过巧妙地结合糖,氨基酸或有机酸等化合物的巧妙结合,为可持续和环保化学过程提供了有希望的途径。这些“绿色”溶剂超出了化学或材料工程中的应用,在诸如生物催化,提取过程和二氧化碳捕获等不同领域中找到了应用。尽管他们的顾问众多,包括低成本,易于准备,可调性和生物效果,但由于理解不足,DES的全部潜力仍然难以捉摸,从而阻碍了他们无缝整合到工业应用中。虽然先前的评论主要集中于定义和展示DES的应用,但它们经常忽略物理化学表征的关键方面。类似于其他溶剂类别,DES的理化特性,例如极性,粘度,密度和电导率在确定其适用性方面起着关键作用。认识到这一差距,本综述的主要目标是提供一个实用的指南,其中包括DES的准备,表征和应用,从而为研究人员和从业人员都提供了对这些溶剂的全面理解。此外,手稿将深入研究DES的各种类型,探索其独特的物理化学特性和针对各种不同领域的各种应用程序量身定制的潜在修改。
在21世纪之交附近,弱规模上的超级主体理论预测的引人注目的签名激发了即将到来的实验中对新发现的预期,例如大型强子对撞机和下一代地下暗物质直接检测实验(1,2,2,3)。因此,高能物理学领域的大部分活动都是由一小部分常见范式驱动的,而这些范式可能超出了标准模型。今天,尽管这种实验的持续操作当然很可能很快可能很快发现了Electroweak(〜TEV)量表附近的新物理学,但可能已经大部分的发现潜力已经耗尽了。这种状况导致社区的先验放松了新的物理学,首先要揭露新物理学的地方(4)。例如,尽管发现暗物质与标准模型的其他基本问题(例如层次结构问题)相关,但没有理论上具有吸引力,但没有第一个原理的原因。,高能的新物理学也可能超出了最强大的未来攻略者的范围。但是,即使这是真的,能量极高的动态也会引起新的虚弱耦合的低能自由度,激励观察性签名,这些观察性签名可用于小规模的精确实验。受到先验的这些转变和数据的渴望,许多高能物理学家,牙的和实验家都已经深入参与了构思和开发针对新物理学低能标志的小规模探针(8,9)。这种假设颗粒的两个例子以及本综述的重点是“轴轴”和“暗光子”,即普通锥形和光子的暗区类似物,它们在涉及额外维度和量规耦合统一的理论中无处不在(5,6,7)。这些努力涵盖了许多不同的子场,涉及凝聚态物理,原子物理学和量子信息科学之间的联系。与二十年前相比,高能物理界发现自己处于多元化增加的健康状态。在本综述中,我们旨在为对实验室精确探针和深色光子的非专家提供有用的切入点。在过去的二十年中,有多种文章(例如,参见参考文献。(10,11)),该)调查了当时的最著名实验方法的发展,例如cav-
我是环境经济学专家,专门从事非市场估值,环境政策分析,行为建模和成本效益分析。我的跨学科专业知识将经济原则与环境科学融合在一起,以应对复杂的环境挑战和外部性。我有一个可靠的记录,即从州和联邦机构获得竞争性外部资金,并与发展中国家和发达国家的各种全球利益相关者和联合国机构合作,以收集数据并准备同行评审的期刊和技术报告。我渴望通过创新的研究和有效的教学来为我的跨学科背景,学术卓越和领导能力做出贡献。教育
抽象的暗光子是标准模型的某些扩展中调用的粒子,可以说明宇宙的暗物质含量至少部分。已经提出,恒星内饰中的深色光子的产生可能以取决于暗光子质量及其与标准模型颗粒的耦合(动力学混合参数χ)的速率发生。在这项工作中,我们旨在探索深色光子生产在晚期进化阶段的太阳质量红色巨型分支(RGB)恒星中的影响。我们证明,在所谓的RGB凸起,深色光子的产生中,可能是恒星有足够的显着意义的能量汇,以修改星星对流区域的扩展。我们表明,Asterosology能够检测到结构中的这种变化,从而使我们可以分别预测深色光子的质量和动力学混合的900 eV和5×10-15。我们还证明,可以从黑暗光子增加RGB尖端在当前观察不确定性上的光度的事实得出其他约束。因此,这项工作为经验方法铺平了道路,以加深对这种暗物质颗粒的研究。
深色光子,可以在陆地低背景实验(即中微子实验)中看到它们。使用暗物质[3-5]或其他天体物理学来源的其他衰减/歼灭产物进行了类似的分析[6]。这种情况使我们能够探索夫妇到深色光子的低质量暗物质(DM)的信号。直到近年来,这种低质量DM的直接检测实验相对不受限制。缺乏的低质量DM呈现是沉积的后坐力与DM质量成正比,通常低于检测器阈值小于少数GEV的质量。虽然近年来低阈值检测器技术已取得了进步,但新的策略和材料在限制低质量DM方面具有很大的希望[7-38]。本文的布局如下:在秒中。ii,我们将根据歼灭和相应的深色光子通量来讨论χ在银河系中的分布。sec。 iii我们描述了深色光子与物质的相互作用,特别是,实验的光学特性如何增强或抑制深色光子的吸收。 sec。 iv我们显示了现有实验和预计实验的结果。 第五节涵盖了此模型的现有限制,而秒。 vi讨论了腐烂的暗物质引起的类似信号。sec。iii我们描述了深色光子与物质的相互作用,特别是,实验的光学特性如何增强或抑制深色光子的吸收。sec。 iv我们显示了现有实验和预计实验的结果。 第五节涵盖了此模型的现有限制,而秒。 vi讨论了腐烂的暗物质引起的类似信号。sec。iv我们显示了现有实验和预计实验的结果。第五节涵盖了此模型的现有限制,而秒。vi讨论了腐烂的暗物质引起的类似信号。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年1月18日发布。 https://doi.org/10.1101/2024.01.18.576062 doi:Biorxiv Preprint
轴轴和轴心般的颗粒是强烈动机的深色候选者,它们是许多当前基于地面的深色搜索的主题。我们介绍了轴线深色双重腔(ADBC)实验的第一个结果,该实验是一个光弓形腔,探测了电磁波的轴突诱导的双向反射性。我们的实验是可调且量子噪声限制的第一个光轴检测器,使其对广泛的轴突质量敏感。我们迭代探测了轴质量范围40。9 - 43。 3 nev = C 2,49。 3 - 50。 6 nev = c 2和54。 4 - 56。 7 nev = c 2,没有发现暗物质信号。 平均而言,我们在Gaγγ≤1的水平上限制了轴突样粒子和光子耦合。 9×10 - 8 GEV - 1。 我们还提出了使用光腔的未来斧头暗示意检测实验的前景。9 - 43。3 nev = C 2,49。3 - 50。6 nev = c 2和54。4 - 56。7 nev = c 2,没有发现暗物质信号。平均而言,我们在Gaγγ≤1的水平上限制了轴突样粒子和光子耦合。9×10 - 8 GEV - 1。我们还提出了使用光腔的未来斧头暗示意检测实验的前景。