摘要用于结构增强和改造,高级复合材料(例如碳纤维增强聚合物(CFRP)和玻璃纤维增强聚合物(GFRP))经常被使用。在土木工程中的应用需要彻底了解此类材料的行为和响应。为了预测应力 - 应变行为,当前的研究重点是CFRP和GFRP增强混凝土标本的数值模拟。abaqus用于使用C3D8R固体元素对混凝土样品进行建模。材料建模考虑了混凝土的非线性压缩行为和CFRP/GFRP的线性弹性压缩行为。这项研究与正常强度的混凝土相比,研究了载荷能力的增长,并局限于无限制的强度。通过与公开的实验结果进行比较,已经确认了数值模拟的有效性。此外,仔细检查了层数的影响。此外,还进行了用GFRP和CFRP增强的标本的应力 - 应变特性的比较。
土木和建筑工程系的教职员工在混凝土,结构,水资源,岩土技术,环境,生命周期评估,建筑能源效率和集成建筑设计等材料领域中活跃。该部门提供硕士和博士课程,使学生能够在国际知名研究人员的监督下在最先进的实验室工作。该部门的设施包括用于结构和材料测试的2,000平方米的实验室,一个混凝土试验厂,三个大型反应墙,两个测试平板,最先进的测试设备,环境实验室,建筑能源效率实验室,外部液压和水文学综合体以及2,000台尺度的尺度尺度尺度的大型尺寸,大型尺寸的组合量。Sherbrooke大学(GRCB)的水泥和混凝土研究小组由4位教授及其团队组成,他们在混凝土材料领域具有专业知识:物理化学,微观结构,耐用性和流变学。Over time, this shared expertise has led to the development and deployment of tomorrow's materials, such as: (ultra-)high performance concretes, concretes containing alternative supplementary cementitious materials such as glass powder ( SAQ Chair in the valorization of glass in materials ) and fluid concretes with adapted rheology ( NSERC Industrial Chair on the development of fluid concretes with adapted rheology ).
摘要 - 最常见的材料之一是具体的。混凝土由于其高抗压强度以及其他好处,例如防水性,低维护成本,易于成型,成型尺寸和形式,低制造能源消耗等等,因此优于其他建筑材料。某种形式的拉伸加固对于混凝土是必需的。在这项研究中,将石墨烯添加到M30级的混凝土中,以提高其分裂的拉伸强度,抗压强度和抗裂纹时的抵抗力。“高剪切去角质”是混合石墨烯和水的过程的术语。石墨烯和混凝土之间存在明显的差异。用石墨烯折叠的混凝土还降低了“碱 - 硅基反应”。这项研究的目的是使用水泥复合材料来研究石墨烯及其衍生物。在这项工作中采用的石墨烯中的氧化硅官能团被聚合并使与水泥水合物的化学相互作用变得无效。石墨烯的另一种用途是作为抗腐蚀覆盖物。我们正在测试地石墨烯的不同百分比-0.5%,1.0%,1.5%和2.0%的水泥重量 - 在混凝土样品中,尺寸为150 x 150 x 150毫米的立方体,横梁和500 x 100 x 100 mm的横梁。将结果与常规水泥混凝土的结局进行了比较。在添加不同百分比的石墨烯后的7、14和28天后检查了混凝土标本的机械特性。“混凝土的最佳强度”是结果。
- 毛皮皮肤肿瘤(SCC,BCC,黑色素瘤)被视为皮肤癌(WLE±化学) - 肛门边缘的T1N0疾病有时可能单独使用WLE治疗(用1 cm的边缘) - 肛门腺癌将被视为静脉疾病 - 如果是静脉疾病 - 如果是静脉疾病,请务必渗透性,纯粹是纯粹的疾病,该疾病是纯粹的渗透性的,该疾病均具有渗透性的依赖性。可以进行解剖
我们提供了推荐的计划和项目想法的清单,这些计划和项目想法将解锁州点的Abili Ty,以采购低C灰泥材料。这些建议被组织为四个计划,以构成一个全面的低碳混凝土计划。部署在一起,这些举措将有助于广泛使用当今最好的市场,准备就绪,低碳混凝土混合物,同时获得点开始,从而通过创新的,高性能的混音来解除更深入的减少。建筑项目的材料。在下面的g raphic中总结了四个优先级初始化:
摘要本文介绍了一种用于监测混凝土倒入的新方法。传统的手动跟踪方法很乏味,而自动化解决方案(例如计算机视觉(CV)启用的方法)受到了隐秘数据的挑战,并且对各种起重机行为模式的适应性有限。我们提出了一种将上下文知识与对象识别相结合的知识图增强的简历方法。这种方法分析了塔起重机的行为及其与工人,卡车混合器和建筑元素的互动,从而提供了对混凝土倾倒进度的详细且具有弹性的解释。初步发现揭示了该方法解释不完整数据并理解复杂的站点动态的能力,这在现实世界情景中表现出了有希望的潜力。简介混凝土浇注是一种常见且关键的建筑活动,严重影响了建筑项目的完成时间和成本(Wang等,2022)。起重机在这一活性中起着关键作用,因为“起重机和skip”方法是混凝土浇注最普遍的技术之一(Lu等,2003)。在此过程中,混凝土混合在一起,然后由工人倒入地面上的跳过。然后,起重机将跳跃提升到要求混凝土的一个或多个位置。到位后,在将空跳动放回搅拌机中以重新填充之前,将跳过或操纵倒入倾斜或操纵。传统上,监测混凝土倾泻过程的进度是手动和近似的,在该过程中,传递到该地点的混凝土总量被用作倾盆进度的间接指标(Lu&Anson,2004)。此方法仅提供了对进度的粗略估计,并且无法捕获与浇注过程有关的细微差别,例如起重机升降机的周期和卡车搅拌机的等待时间。因此,它对关键现场资源的瓶颈(例如起重机的可用性)提供了有限的见解,并对影响现场生产率的关键决策(例如,雇用额外的起重机)(Hu等人,2021年)产生了最小的贡献。为了了解需要大量数据的倾泻过程,计算机视觉(CV)已出现用于自动数据获取和分析。例如,Gong and Caldas(2010)开发了一种基于简历的方法来跟踪起重机钩和混凝土桶(即跳过),从而可以分析混凝土浇注状态
多功能性和智能系统:扩大无法修复的自我修复材料的功能,包括感应,自适应行为和多功能功能,是未来研究的有希望的方向。挑战包括传感和驱动机制的整合,自我诊断系统的发展以及实施反馈控制循环以进行自主修复。未来的研究应探讨自我修复材料和新兴技术(例如人工智能,物联网(IoT)和高级传感器)之间的协同作用,以创建智能,适应性的材料和结构。
物种和植物名称(附件)基本组成和质量因素质量标准(附件中列出)真实性,添加剂,污染物,卫生,标签,分析和采样方法
光子神经网络(PNN)已成为传统电子神经网络的有前途的替代品。然而,PNN的培训,尤其是在传统实践中被认为是高度有效的分析梯度下降算法的芯片实施,这仍然是一个重大挑战,因为物理系统并非差异。提出了诸如无梯度和数值梯度方法之类的训练方法,但它们却没有过度测量和有限的可伸缩性。最新的原位培训方法也受到成本挑战,需要昂贵的在线显示器和频繁的光学I/O切换。在这里,提出了一种物理感知的分析梯度培训(PAGT)方法,该方法在分裂和串联策略中计算分析梯度,从而克服了芯片在PNNS训练中造成的不良性引起的差异。在芯片上实施了多种训练案例,尤其是生成对抗网络,与原位方法相比,时间消耗显着降低(从31 h到62分钟),能源消耗降低了四倍。结果为训练混合光子 - 数字电子神经网络提供了低成本,实用和加速的解决方案。
萨塔姆·本·阿卜杜拉西兹王子工程学院,阿尔卡尔·阿尔卡·阿尔卡吉(Alkharj)11942,沙特阿拉伯b民事和基础设施工程系环境工程(SCEE),国立科学技术大学(NUST),H-12部门,伊斯兰堡44000,巴基斯坦F,巴基斯坦F部土木工程系,马来西亚莫纳斯大学马来西亚工程学院,Jalan Lagoon Selatan,Jalan Lagoon Selatan,Bandar Sunway,Bandand Sunway,Selangor 47500技术,瑞典萨塔姆·本·阿卜杜拉西兹王子工程学院,阿尔卡尔·阿尔卡·阿尔卡吉(Alkharj)11942,沙特阿拉伯b民事和基础设施工程系环境工程(SCEE),国立科学技术大学(NUST),H-12部门,伊斯兰堡44000,巴基斯坦F,巴基斯坦F部土木工程系,马来西亚莫纳斯大学马来西亚工程学院,Jalan Lagoon Selatan,Jalan Lagoon Selatan,Bandar Sunway,Bandand Sunway,Selangor 47500技术,瑞典萨塔姆·本·阿卜杜拉西兹王子工程学院,阿尔卡尔·阿尔卡·阿尔卡吉(Alkharj)11942,沙特阿拉伯b民事和基础设施工程系环境工程(SCEE),国立科学技术大学(NUST),H-12部门,伊斯兰堡44000,巴基斯坦F,巴基斯坦F部土木工程系,马来西亚莫纳斯大学马来西亚工程学院,Jalan Lagoon Selatan,Jalan Lagoon Selatan,Bandar Sunway,Bandand Sunway,Selangor 47500技术,瑞典