摘要:随着在线传感技术和高性能计算的最新进展,结构健康监测 (SHM) 已开始成为对民用基础设施进行实时条件监测的自动化方法。理想的 SHM 策略通过利用测量的响应数据来更新基于物理的有限元模型 (FEM) 来检测和描述损坏。在监测复合结构(例如钢筋混凝土 (RC) 桥梁)时,基于 FEM 的 SHM 的可靠性会受到材料、边界、几何和其他模型不确定性的不利影响。土木工程研究人员已经采用了流行的人工智能 (AI) 技术来克服这些限制,因为 AI 具有利用先进的机器学习技术快速分析实验数据来解决复杂和定义不明确的问题的天生能力。在这方面,本研究采用了一种新颖的贝叶斯估计技术来更新耦合的车辆桥梁 FEM 以用于 SHM。与现有的基于 AI 的技术不同,所提出的方法智能地使用嵌入式 FEM 模型,从而减少了参数空间,同时通过基于物理的原理指导贝叶斯模型。为了验证该方法,给定一组“真实”参数,从车桥 FEM 生成桥梁响应数据,并分析参数估计的偏差和标准差。此外,平均参数估计值用于求解 FEM 模型,并将结果与“真实”参数值的结果进行比较。还进行了敏感性研究,以展示正确制定模型空间以改进贝叶斯估计程序的方法。研究最后进行了讨论,重点介绍了利用实验数据使用人工智能技术更新混凝土结构 FEM 时需要考虑的因素。关键词:人工智能、贝叶斯统计、结构健康监测、钢筋混凝土、公路桥梁、车桥相互作用。
本报告描述了钢筋混凝土桥梁阴极保护的发展历程和现状。它讨论了阴极保护的工作原理以及该技术的有效性。报告还介绍了钢筋混凝土阴极保护的广泛历史,涵盖了已完成项目的各个方面。其中包括条件调查、补救措施、阳极系统、设计方面、操作和维护以及研究和开发。所有各种类型的阳极系统在设计和建造时都有详细的特征。对所有系统的辅助设备(例如电源和监控设备)进行了审查。致力于所需的研究和开发,以阐明进一步开发和使用钢筋混凝土结构阴极保护所必需的研究工作。