其中,S 为塞贝克系数,σ 为电导率,κ 为热导率,T 为绝对温度。ZT 用于比较热导率不同材料的热电性能。而功率因数(PF = S2σ)则比较热导率相近材料的热电效率。[1–7] 目前,Bi 2 Te 3 、PbTe 和 SiGe 等无机化合物占据热电市场主导地位。[8–12] 然而,这些化合物的使用存在若干缺点,例如毒性、原材料稀缺、成本高和不可持续。因此,人们对寻找可替代的可持续、高度丰富、低成本和无毒的材料有着浓厚的兴趣。有机半导体(例如:导电聚合物、碳质材料和纳米复合材料)由于其优越的性能(例如可用性、低热导率、易于化学改性和大规模生产)而提供了一种新兴的替代方案。通过掺杂 PEDOT 来提高导电聚合物的热电性能,可使 ZT 值达到 0.2–0.4。[13] 碳纳米结构,特别是碳纳米管 (CNT) 在通过以下方法制备的多层系统中表现出优异的热电行为
摘要:混合层流控制或 HLFC 设计是一个复杂且多学科的过程,需要从全局系统的角度彻底了解所有方面。本文的目的是介绍 HLFC 系统重要组件的初步设计,以帮助快速评估概念系统架构。这对于在系统开发的早期阶段评估可行性、系统性能和整体飞机效益非常重要。本文还讨论了有关主动 HLFC 系统设计的各种重要系统要求和问题,并介绍了各个学科之间的接口。从研究中可以强调的是,HLFC 系统的未来压缩机设计应考虑热管理方面和来自气动结构设计优化以及排水系统解决方案的额外质量流量要求。提出了一种计算集气室内累积水含量的方法,并研究了排水孔对功耗的影响。HLFC 压缩机电机的低阶热管理研究表明,超高速电机在长时间运行时绕组温升较高,需要有效的冷却解决方案。
我感谢学术顾问 Günther Neuwerth 博士和 Ralf Hörnschemeyer 博士在我论文的开始和结束阶段给予的持续鼓励。如果没有这些优秀的同事和朋友,我不可能在亚琛度过如此美好的时光。我感谢 Eckhard Anton,他教会了我很多东西,至今我仍从中受益匪浅,感谢他无数次的编程课程,尤其是他对 MICADO 的基础工作和坚持不懈的想法。我感谢 Katharina Schäfer,她从我学习之初就陪伴着我;我无法想象有比她更好的同事、朋友和讨论伙伴组合。我还要感谢 Tim Lammering 博士、Florian Schültke 和 Fabian Peter 在飞机设计方面的出色合作,以及许多共同的工作时间和业余时间。当然,这还包括所有其他同事、朋友和几位学生工作者,他们以不同的方式为这篇论文、MICADO 的开发以及我在 ILR 的时光做出了贡献。