摘要 在星载雷达观测海洋的各种挑战中,以下两个问题可能更为突出:动态分辨率不足和垂直穿透效果不佳。未来十年,雷达干涉测量和海洋激光雷达技术可能会取得两项备受期待的突破,预计它们将对亚中尺度分辨和深度分辨的海洋观测做出重大贡献。计划中的“观澜”科学任务包括双频(Ku 和 Ka)干涉测高仪(IA)和近天底指向海洋激光雷达(OL)。星载主动 OL 将确保更深的穿透深度和全时探测,从而对地下海洋的光学特性进行分层表征。OL 和双频(Ku 和 Ka)干涉测高系统的同时运行将使我们更好地了解大气和海气界面的贡献,从而大大减少两个传感器的误差预算。 OL有效载荷有望部分揭示真光层中垂直间隔10米的海洋食物链和生态系统,在动态和生物光学上向海洋混合层迈出重要一步。
基于对流大气边界层的大涡模拟 (LES) 的先验分析,提出了改进的湍流混合和耗散长度尺度,用于基于湍流动能 (TKE) 的行星边界层 (PBL) 方案。湍流混合长度结合了表面层中的表面相似性和 TKE 约束,并对混合层中的横向夹带效应进行了调整。耗散长度是根据考虑剪切、浮力和湍流混合的平衡 TKE 预算构建的。在 TKE 通量中添加了一个非梯度项,以校正 TKE 的非局部湍流混合。改进的长度尺度被应用于 PBL 方案,并使用理想的单柱对流边界层 (CBL) 情况进行了测试。结果在广泛的 CBL 稳定范围内表现出强大的适用性,并且与 LES 基准模拟非常一致。然后将其实施到社区大气模型中,并通过 3D 真实情况模拟进行进一步评估。新方案的结果与其他三种成熟的 PBL 方案的质量相当。模拟和无线电探空仪观测剖面之间的比较表明,新方案在晴朗的日子里表现良好。
摘要。生物碳泵(BCP)包括将有机碳从表面转移到深海的各种过程。这导致了长期的碳固执。没有BCP,AT-MospherCO 2浓度将高约200 ppm。 这项研究表明,中尺度和子尺度的海洋动力学可能会对颗粒有机物(POM)垂直分布产生重大影响。 我们的结果表明,诸如中尺度涡流之间的强烈尺度额叶区域可能导致从混合层深度(MLD)(MLD)向中质区域的重要积累和POM转运。 要得出这些结论,采用了多方面的方法。 它进行了原位测量和来自配备有水下视觉效果器(UVP6),卫星高度学数据和Lagrangian diag-Nostics的BGC-Argo河口的海洋积雪图像。 我们将研究重点放在非洲西南开普盆地17个月长的射流任务中观察到的三个强烈的雪分布特征。 这些特征位于中尺度涡流之间的额叶区域。 我们的研究表明,由额叶生成驱动的机制诱导的颗粒损伤泵具有通过增加将碳注入到水柱中的深度来增强生物泵的有效性。 这项工作还强调了建立针对涡流之间接口区域的重复采样活动的重要性。 这可以改善我们的没有BCP,AT-MospherCO 2浓度将高约200 ppm。这项研究表明,中尺度和子尺度的海洋动力学可能会对颗粒有机物(POM)垂直分布产生重大影响。我们的结果表明,诸如中尺度涡流之间的强烈尺度额叶区域可能导致从混合层深度(MLD)(MLD)向中质区域的重要积累和POM转运。要得出这些结论,采用了多方面的方法。它进行了原位测量和来自配备有水下视觉效果器(UVP6),卫星高度学数据和Lagrangian diag-Nostics的BGC-Argo河口的海洋积雪图像。我们将研究重点放在非洲西南开普盆地17个月长的射流任务中观察到的三个强烈的雪分布特征。这些特征位于中尺度涡流之间的额叶区域。我们的研究表明,由额叶生成驱动的机制诱导的颗粒损伤泵具有通过增加将碳注入到水柱中的深度来增强生物泵的有效性。这项工作还强调了建立针对涡流之间接口区域的重复采样活动的重要性。这可以改善我们的
南方海洋在全球碳循环中起着基本作用,主导着通过寄生的寄生和碳的海洋吸收,并通过寄生的碳和碳来调节过去,现在和将来的气候中的大气碳浓度。然而,在那里发现的遥远和极端的条件使南大洋永远成为地球上最困难的地方之一和建模,从而在我们对海洋碳循环的了解中显着和持久的不确定性。传统上使用区域均值框架来理解南大洋中碳的流动,其中子午过度转向循环驱动在空气 - 海量通量和内部海洋碳浓度中观察到的纬度变异性。然而,最近的进步主要取决于范围内的观察和建模能力,揭示了在较小尺度上作用的过程的重要性,包括盆地尺度的划分区域不对称的混合层深度,中尺度涡流涡流,以及高度大气的差异,并超出了范围的范围,并弥补了范围的范围,并在范围内进行了范围,并在范围内进行了范围的范围。对南大洋中的碳循环有四维的理解。
在人为变暖下,未来对气候变异性的未来变化超出了14个特定模式,例如El ni〜no-Southern振荡(ENSO)尚未得到充分的特征。在社区地球系统模型版本2 16大型合奏(CESM2-LE)气候模型中,未来对海面17温度(SST)变化的变化(以及相应的海洋热浪INTEN-18 SITE)在空间上是异质的。我们使用局部线性随机性-20确定性模型检查了北极前期的这些投影变化(在1960-2000和2060-2100之间),这使我们能够量化三个21个驱动因素对SST变异性的变化的影响:SEST变异:海洋“内存”(SECS“内存”(SST DAMPING DAMPING TIMESCALE),ENSO 22 TELECECONECTIOS和STOCHSTICTION和STOCHSTICTION和STOCHSTICTION和STOCHSICTION和STOCHSICTION和STOCHSICTION和STOCHSICTION和STOCHSICTION和Stoch。海洋记忆在大多数23个地区下降,但在北部太平洋中部延长。这种变化主要是由于空气反馈和海洋阻尼的24个变化,而混合层浅25层的深度起着次要作用。ENSO远程连接26模式的向东移动主要负责SST方差变化的模式。27
结构在运行时可以做到即使某一个模态信息缺失整个网络也能取得不错的效果 , 在多通道情感识别、 语义理解、目标学习等领域取得很好的效果 .尽管如此 , 这类网络相对于任务来说还是相对 “ 具体 ”, 如 果要换一个任务 , 用户就需要修改网络结构包括重新调整参数 , 这使得深度神经网络结构的设计是一 个耗时耗力的过程 .因此研究者们希望一个混合的神经网络结构可以同时胜任多个任务 , 以减少其在 结构设计和训练方面的工作量 .鉴于此 , 研究者开始致力于首先采用大数据联合训练构建出多通道联 合特征分享层 , 然后在识别阶段可以同时进行多任务处理的深度多模态融合结构 .如 Google 的学者 尝试建议一个统一的深度学习模型来自适应地适配解决不同领域、不同数据模态下的多个不同类型 的任务 , 且在特定任务上的性能没有明显损失的模型 [71] .该模型构架请见文献 [71] 的图 2, 由处理输 入的编码器、编码输入与输出混合的混合器、混合输出的解码器 3 个部分构成 , 文献 [71] 的图 3 给 出了这 3 个部分的详细描述 .每一个部分的主体结构类似 , 均包含多个卷积层、注意力机制和稀疏门 控专家混合层 .其中 , 不同模块中的卷积层的作用是发现局部模式 , 然后将它泛化到整个空间 ; 注意力 模块和传统的注意力机制的主要区别是定时信号 , 定时信号的加入能让基于内容的注意力基于所处的 位置来进行归纳和集中 ; 最后的稀疏阵列混合专家层 , 由前馈神经网络 ( 专家 ) 和可训练的门控网络组 成 , 其选择稀疏专家组合处理和鉴别每个输入 .
摘要,安哥拉和纳米比亚附近的沿海地区以其东南大西洋的高产海洋生态系统而闻名。最近几十年,这些地区发生了重大的长期变化。在这项研究中,我们研究了整个年度周期中这些长期变化的可变性,并使用34年(1982- 2015年)的区域海洋模型模拟探索了基本机制。结果揭示了安哥拉和纳米比亚海岸沿海面温度(SST)趋势的明显季节性依赖性,其正面和负趋势交替。安哥拉沿海地区的长期变暖趋势主要是由澳大利亚春季和夏季(11月至1月)的明显变暖趋势解释,而纳米比亚的十年趋势是由于对澳大利亚冬季冷却趋势的平衡和澳大利亚的夏季变暖而产生的。对混合层温度变化的热预算分析表明,这些变化是通过沿海电流的长期调节来解释的。安哥拉变暖趋势主要是通过对极向沿海电流的强化来解释的,该电流将更多温暖的赤道水向安哥拉沿岸运送出来。在纳米比亚之外,变暖趋势归因于西北班格拉电流的减少,该电流从南部到纳米比亚海岸的凉爽水。沿海电流中的这些变化与沿赤道波导沿遥远的季节性沿海被困波的调节有关。这些长期变化可能对当地生态系统和渔业具有重大影响。
摘要:为了提高对影响每月海面温度(SST)变异性的海洋过程的理解,我们分析了社区地球系统模型,第2版,层次结构,其中模型仅在其海洋复杂性程度上有所不同。最现实的海洋是动态海洋模型,作为完全耦合模型(FCM)的一部分。从机械脱钩的模型(MDM)中的下一个最现实的海洋就像FCM一样,但排除了异常的风应力 - 驱动的海洋变异性。最简单的海洋是平板海洋模型(SOM)。将浮力耦合的动态海洋纳入MDM,其中包括SOM中缺乏温度对流和垂直混合,导致到处的SST变量减弱,并且与SOM相比,高纬度和赤道PACIDICE中SST异常的持久性降低。与MDM相比,大多数区域中FCM中的异常风应力 - 驱动的海洋动力学会导致更高的SST方差和更长的持续时间尺度。动态海洋的净作用,作为整体阻尼剂或异常SST方差和持久性的扩增,在区域取决于区域。值得注意的是,我们发现与FCM相比,SST变异性的热力学强迫幅度的大小相比,SOM和MDM配置中海洋模型的复杂性的努力导致了变化。这些变化部分源于海洋变化的混合层深度的差异,并在尝试量化某些海洋机制对模型之间SST变异性差异的相对贡献时应考虑。
抽象的湍流参数将仍然是公里尺度地球系统模型中必要的构建块。在对流边界层中,其中保守特性(例如潜在温度和水分)的平均垂直梯度大约为零,标准的ANSATZ将湍流通量与涡流扩散率的平均垂直梯度相关联,必须通过质量 - 浮力参数来扩展典型的非元素和降低的质量上流和下向大气边界层。我们提出了基于生成对抗网络的干燥和瞬时增长的对流边界层的参数化。训练和测试数据是从三维高分辨率直接数值模拟获得的。模型结合了自同性恋层生长的物理学,随后是通过重生化的经典混合层理论。这增强了生成机器学习算法的训练数据库,因此显着改善了在地面层上方边界层内部不同高度的合成生成的湍流场的预测统计数据。与随机参数的不同,我们的模型能够预测不同高度的浮力波动,垂直速度和浮力通量的高度非高斯和短暂性统计,从而捕获了最快的热量渗透到稳定的顶部区域。我们的生成算法的结果与标准的双方程质量 - 舒适方案一致。我们的概念证明也为在其他自然流中有效的数据驱动对流参数铺平了道路。目前的参数化还提供了湍流对流的颗粒型水平组织,这在其他模型封闭中均无法获得。
Buoy Pack-90%较小,今年早些时候,科学数据收集设备的制造商OceanTronics Inc.(夏威夷州檀香山)向其GPS/ICE浮标推出了这种新型混合锂电池技术。为了创建一个较小,更具成本效率的浮标,OceanTronics从Tadiran中选择了Pulsesplus TM TM TM杂种硫二甲基 - 氯化锂电池,这是目前唯一可用的电池将螺旋线型LI/SOCL2 li/socl2 li/socl2硫二烷基氯化物电池与杂化层均层含有杂化层capicitor。在1994年,OceanTronics为美国海军和其他联邦机构提供了商业雷达,GPS系统和外围设备的主要供应商。原始电池组重54公斤(kg),需要380个碱性D细胞进行一年的运行。在2001年初,海洋陶龙将其最新一代的GPS/ICE浮标传递给了北极环境观察者,用于用于测量全球气候变化对北极海洋冰上浮动的影响的科学实验。这些浮标的电池组仅重3.2千克,并利用32个D细胞锂氯化锂电池和四个混合层的电容器。切换到这种新的混合锂电池技术,导致了显着的尺寸和减轻重量的90%。易于运输对于在冰冷的北极水域工作的技术人员极为重要。同样,许多较小的锂包装可以代替较大的碱性包装,从而延长了系统的运行寿命。在开发新一代GPS/ICE浮标时,OceanTronics需要