估计多体量子系统的整体特性(例如熵或二分纠缠)是一项极其困难的任务,通常需要大量测量或经典后处理资源,而这些资源会随着系统规模的扩大而呈指数增长。在这项工作中,我们解决了通过部分转置 (PT) 矩估计全局熵和混合态纠缠的问题,并表明在假设所有空间相关长度都是有限的条件下,存在有效的估计策略。专注于一维系统,我们在系统密度矩阵上确定了一组近似分解条件 (AFC),这些条件使我们能够根据局部子系统的信息重建熵和 PT 矩。这产生了一种简单有效的熵和纠缠估计策略。我们的方法可以以不同的方式实现,具体取决于如何提取有关局部子系统的信息。我们专注于随机测量 (RM),提供一种实用且常见的测量方案,证明我们的协议只需要多项式多次测量和后处理操作,假设要测量的状态满足 AFC。我们证明 AFC 适用于有限深度量子电路状态和平移不变矩阵积密度算子,并提供数值证据证明它们在更一般、物理上有趣的情况下得到满足,包括局部汉密尔顿量的热状态。我们认为,我们的方法可以实际用于检测当今量子平台中可用的大量量子比特的二分混合态纠缠。
量子几何是区分晶体中电子和真空中电子的关键量。对量子几何的研究继续为量子材料提供见解,揭示发现量子材料的新设计原则。然而,与贝里曲率不同,对量子度量缺乏直观的理解。在这里,我们表明布洛赫电子的量子度量导致动量空间引力。特别是,通过将电子动力学的半经典公式扩展到二阶,我们发现所产生的速度被测地线项修改,并成为弯曲空间中洛伦兹力的动量空间对偶。我们计算了魔角扭曲双层石墨烯的测地线响应,并表明具有平带的莫尔系统是观察这种效应的理想候选者。将这种与重力的类比进一步扩展,我们发现爱因斯坦场方程的动量空间对偶对于纯态仍然无源,而对于混合态,它获得一个取决于小熵的冯·诺依曼熵的源项。我们将该应力能量方程与广义相对论的弱场极限进行比较,得出冯·诺依曼熵是引力势的动量空间对偶的结论。因此,混合态的动量空间测地线方程被一个类似于熵力的项所修改。我们的研究结果强调了量子几何、动量空间引力和量子信息之间的联系,促使人们进一步探索量子材料中的这种对偶引力。
• 波粒二象性和不确定性原理 • 波函数、薛定谔方程、 • 时间无关的一维问题 • 算子形式主义 • 量化谐振子、LC 振荡器 • 光的量化、光子统计、相干态、福克态、压缩态 • 使用紧束缚模型的固体能带 • 时间无关微扰理论、非谐振子 • 原子与光相互作用的 Jaynes-Cummings 哈密顿量 • 量子比特、布洛赫球、单量子比特门、光子量子比特的路径编码 • 纠缠、贝尔不等式、双量子比特门 • 超密集编码、量子隐形传态、纠缠交换 • Hong-Ou-Mandel 干涉、相位超分辨率 • 混合态和密度算子 • 量子算法简介 学生学习成果
本文对算法信息论和量子力学交叉领域的已发表和未发表的资料进行了综述。据作者所知,这是此类综述的首例。综述了三种不同的量子态算法内容概念。介绍了算法量子典型性和互信息的概念。探讨了算法信息与量子测量之间的关系。令人惊讶的结果之一是,绝大多数量子态(纯态和混合态)在进行退相干时,将产生没有算法信息的经典概率。因此,大多数量子态退相干为白噪声。综述了 Martin L¨ 的随机序列的量子模拟。算法信息论为多世界理论带来了新的复杂性,因为它与独立性假设相冲突。当排除算法复杂的过程时,需要测量来产生具有可克隆信息的量子态分布。
摘要 本文研究了量子态可能具有的各种被认为特有的“量子”性质(纠缠、非局域性、可控性、负条件熵、非零量子不一致性、非零量子超不一致性以及语境性)及其对立面。本文还在以下意义上考虑了它们的“绝对”对应物:如果给定状态在任意幺正变换后仍然具有给定属性,则它绝对地具有该属性。总结了所列属性之间以及它们的绝对对应物之间的已知关系。证明了唯一绝对具有零量子不一致性的两量子比特状态是最大混合态。最后,讨论了有关“经典”和“量子”这两个术语的概念问题。
近几十年来,纠缠已成为量子力学诸多应用的核心话题,范围从量子信息 [1] 到量子热力学 [2]。人们做了大量工作来描述纠缠的特征并量化量子系统间共享的纠缠量,例如参见文献 [3] 及其中的参考文献,重点是定义与纠缠资源理论相关的度量 [4]。然而,除了低维二分系统 [5] 外,没有必要且充分的标准来确定给定的量子态是否纠缠,并且两量子比特的情况是目前唯一一个在纯态和混合态中都实现了纠缠完整表征的量子系统 [6]。最简单形式的多分纠缠,即三个量子比特共享的三分纠缠,已经非常复杂,以至于没有分析
在第 1 章中,我们看到开放量子系统可以与环境相互作用,并且这种耦合可以将纯态转变为混合态。此过程将对任何量子计算产生不利影响,因为它可以减轻或破坏干扰效应,而干扰效应对于区分量子计算机和传统计算机至关重要。克服这种影响的问题称为退相干问题。从历史上看,克服退相干的问题被认为是构建量子计算机的主要障碍。然而,人们发现,在适当的条件下,退相干问题是可以克服的。实现这一目标的主要思想是通过量子误差校正 (QEC) 理论。在本章中,我们将介绍如何通过 QEC 方法克服退相干问题。值得注意的是,本介绍的范围并不全面,并且仅关注 QEC 的基础知识,而没有参考第 5 章中介绍的容错量子计算的概念。量子误差校正应该被视为这个更大的容错量子计算理论中的一个(主要)工具。
我们设计了一种通过相空间分布相关性来认证非经典特征的方法,该方法统一了准概率和相关函数矩阵的概念。我们的方法补充并扩展了基于切比雪夫积分不等式的最新结果 [Phys. Rev. Lett. 124, 133601 (2020)]。这里开发的方法在相空间中的任意点关联任意相空间函数,包括多模场景和高阶相关性。此外,我们的方法提供了必要和充分的非经典性标准,适用于 s 参数化函数以外的相空间函数,并且可以在实验中使用。为了证明我们技术的强大功能,我们仅使用二阶相关和 Husimi 函数来验证离散和连续变量、单模和多模以及纯态和混合态的量子特性,这些函数始终类似于经典概率分布。此外,我们还研究了我们方法的非线性推广。因此,我们设计了一个通用且广泛适用的框架,以揭示相空间分布矩阵中的量子特性。
量子速度极限 (QSL) 何时才是真正的量子?虽然 QSL 时间的消失通常表示经典行为的出现,但目前仍未完全了解经典性的哪些方面是这种动力学特征的起源。在这里,我们表明 QSL 时间的消失(或量子速度的发散)可以追溯到量子可观测量不确定性的降低,因此可以理解为这些特定可观测量出现经典性的结果。我们通过为经历一般高斯动力学的连续变量量子系统开发 QSL 形式来说明这种机制。对于这些系统,我们表明导致 QSL 时间消失的三个典型场景,即大压缩、小有效普朗克常数和大粒子数,可以从根本上相互联系。相反,通过研究开放量子系统和混合态的动力学,我们表明由于添加经典噪声而导致状态不相干混合而出现的经典性通常会增加 QSL 时间。