6泰国Mahidol University,Mahidol University,Mahidol University,泰国Mahidol University的医学院生理系 *电子邮件:ekachai.j@tggs.kmutnb.ac.th(通讯作者)摘要。 本文的目的是提出一个数值设计的多个稀释微流体芯片,该芯片可以同时递送几种血清稀释液。 被选择以稀释为稀释,并通过蛇形混合通道实现,其中诱导院长涡流以增加接触面积和时间以更好地扩散。 使用五个常用混合指数对该稀释芯片出口的混合性能进行数值评估,其目标是混合通道的出口横截面区域的均匀性必须大于93.319%,以实现六sigma质量控制。 关键字:微流体,稀释,混合流,混合指数,人血清。6泰国Mahidol University,Mahidol University,Mahidol University,泰国Mahidol University的医学院生理系 *电子邮件:ekachai.j@tggs.kmutnb.ac.th(通讯作者)摘要。本文的目的是提出一个数值设计的多个稀释微流体芯片,该芯片可以同时递送几种血清稀释液。被选择以稀释为稀释,并通过蛇形混合通道实现,其中诱导院长涡流以增加接触面积和时间以更好地扩散。使用五个常用混合指数对该稀释芯片出口的混合性能进行数值评估,其目标是混合通道的出口横截面区域的均匀性必须大于93.319%,以实现六sigma质量控制。关键字:微流体,稀释,混合流,混合指数,人血清。
摘要 - 中小型机器建设企业(SME)具有发展经济相关部门的巨大潜力。对于在技术的高压下,对于此类企业的可持续发展,值得选择适当的方式来呈现和交换信息,并按照行业4.0的概念使用现代数字服务。对机器建筑中小企业内部和外部可持续发展条件的条件分析确定了限制竞争力增长的主要后勤问题。本文强调了使用有关产品生命周期信息的数字整合的观点:从CAD/CAE/CAM/CAPP设计到水平合作条件下的供应和销售。特别注意确定数字3D模型在不可抗力环境中的作用,这对于中小企业尤其敏锐。该研究基于使用机器建筑产品 - 混合流涡轮机。数字转换工具是Android平台的移动应用程序,它使读取QR码并显示带有数据的3D产品模型成为可能。建议的解决方案可以提高供应链规划的效率,因为不断提供有关产品生命周期每个阶段的信息。关键字:SCM;中小型3d;造型;数据可视化;虚拟模型;生命周期;数字化;管理;行业4.0;可持续性。
大容量、高密度 ● 4U机箱提供高达440TB的容量 ● 高密度设计减少了安装空间要求和运输成本 低功耗 20TB企业级硬盘,每TB功耗降低50% 安全可靠 ● iRAID技术和N+M冗余机制,单个RAID最多允许2块错误硬盘 ● 硬盘加密技术,只允许海康威视设备读取硬盘内的数据,保护数据安全 免维护 ● 按需重建故障硬盘 ● 硬盘定期自动更换 高性能的流数据管理结构 基于流媒体底层管理结构,解决文件系统损坏导致文件无法读取或丢失的问题,确保覆盖写入时不会产生文件碎片 混合流直存 ● 支持视频流和SMART流混存 ● 支持RTSP、ONVIF等协议访问摄像机iRAID 通过Erasure encoding和iRAID技术,保证2块硬盘同时存在的情况下,数据的完整性单个RAID故障,如果错误硬盘数量超过冗余限制,其他硬盘仍可读写。丰富的应用● 支持连续录像、手动录像、报警录像。人性化的操作维护● 支持一键配置,提高系统配置效率● 通过指示灯报警、邮件报警等丰富的报警管理方式,提高设备维护效率。
毛细管驱动的微流体设备对现场分析具有重大兴趣,因为它们不需要外部泵,并且可以用廉价的材料制成。在毛细管驱动的设备中,由纸张和聚酯膜制成的设备最常见,并且已用于广泛的应用中。但是,由于毛细力是唯一的驱动力,因此很难控制流动,并且必须使用更改几何形状等被动流控制方法来完成各种分析应用。本研究提出了几种可在层压毛细管驱动的微流体设备中使用的新流量控制方法,以提高可用功能。首先,我们引入了可以停止并开始流动的推动阀系统。这些阀可以停止流动> 30分钟,并通过按下通道或将其他流体流动到阀区域进行打开。接下来,我们提出了Y形通道的流控制方法,以实现更多功能。在一个示例中,我们证明了准确控制浓度以创建层流,梯度和完全混合流的能力。在第二个示例中,通过调整入口通道的长度来控制主通道中的流速度。另外,随着入口长度的增加,流速度是恒定的。最后,检查了Y形装置中的流速与通道高度和流体特性(例如粘度和表面张力)的函数。与以前关于毛细管驱动通道的研究一样,流速受每个参数的影响。此处介绍的流体控制工具将为各个领域的低成本需求测定方法提供新的设计和功能。
doi:https://dx.doi.org/10.30919/es1299使用纳米流体的纳米流体液体散热器单元对18650圆柱电动汽车电池模块的热冷却增强,使用纳米流体混合流通式流通信道Sarawut Sirikasemsuk,1 ponthep vengsundi sillemsunge,2 Jarthep vennepe vennepe vennepe vennep。 Eiamsa-Ard,3 Phumisak Tangmunpoowadol 4和Paisarn Naphon 4, *抽象的数值分析和测试是为了预测使用与不同微型频道散热器单位的通道流动的Ferrofluil的冷却去除能力。电池模块组件由铝制块制成。在这项研究中,以总电压和25.2V和30a的电流为圆柱形式评估了60个18650电池。这项研究选择了改善冷却液和流动表面积的特性,以改善电池热冷却。集成的散热器单元具有较大的表面积,并且通过它运行的冷却液的流动破坏更多。结果,模型I和II分别表现出最高和最低的温度。细胞最高温度为30.91°C(I),30.10°C(II型),30.11°C(III型)和30.12°C(型号IV)。此外,模型I,II,III和IV的温度梯度分别为2.35°C,1.48°C,1.56°C和1.61°C。这些发现对电池热管理系统的演变具有重要意义,因为它们探索了几种传热增强方法,以改善热冷却以获得安全稳定的操作。