面粉来自廉价但可腐烂的土著农作物,例如谷物,豆类,根和块茎,在全球范围内贡献了约90%的食品卡路里摄入量。这些可以作为复合材料进行处理,并准备成容易获得的有益健康的主食功能食品,具有多种功能,可提供某些生理,治疗和营养益处。这一开发需要从各种植物来源(以不同百分比)进行混合面粉,以生产各种食品。它们的大量营养素成分和与增强的生物活性潜力相关的多种二级代谢产物可以共同吞并,以获得生存所必需的平衡饮食,并在预防和管理慢性疾病方面具有重大健康益处。要接受成人饮食疗法作为健康的接受,通常应该平均能够以以下比例每天提供卡路里:碳水化合物(55%),蛋白质(22.5%)和脂肪(27.5%)。这可以使用大多数本土植物的面粉混合物来实现。对从混合面粉中生产功能性食品商品的兴趣在全球增加,目前正在吸引研究人员的好奇心。拥有许多比较优势的原始植物和收获后损失,尼日利亚等非洲国家可以使用这项技术来增强其农业生物资源的利用。这些面粉混合物的开发将加速原生粮食作物的剥削,以生产准备就绪的,高营养的功能性食品,例如面包,蛋糕和饼干。这篇评论重点介绍了使用未充分利用的植物材料作为复合面粉来准备即食面包店和主食功能食品而获得的营养质量,价值和健康衍生物。饮食疗法是一种延长预期寿命的强大手段,因为在这个后期19个时代,饮食正确和健康可能是提高免疫力的重要策略。
1材料物理学的主要实验室,固态物理研究所,Hefei物理科学研究院(HFIP),中国科学院,中国赫菲230031,中国; 2科学岛分支,中国科学技术大学研究生院,中国Hefei 230026; 3高压科学和技术高级研究中心,20120年上海,中国; 4上海材料边界研究的主要环境研究(MFREE),上海物理科学先进研究(Sharps),20120年上海,中国上海; 5吉林大学物理学研究所的超级材料国家主要实验室,中国长春130012和6材料科学与工程学院,北京科技大学,北京100124,中国
模仿自然解决技术问题的进化算法、将植物变成活数据档案的合成 DNA 以及在生物体内使用自主机器只是几个例子,表明生命与技术之间的界限在 21 世纪初已经变得模糊不清。虽然生物体的技术化历史悠久,但如今在生物信息学、分子生物学和其他领域可以观察到技术日益生物化。这一发展的特点是学科和方法论界限的跨越。越来越难以说出生物学与技术、科学与经济、代表与干预之间的界限在哪里。事实上,生物体和技术不再被认为是本体论上不同的实体。相反,生物和技术系统似乎正变得越来越交织在一起,并在这一过程中交换属性。在这种背景下,自然本身越来越成为技术设计和经济投资的构建工具和资源。
如今,材料必须满足高机械要求,同时在生产中具有成本效益。在塑料行业中,这是由所谓的聚合物混合物实现的,这是至少两个具有不同特性的聚合物的混合物。结果是低成本,同时为各自的应用量身定制材料。确保良好的机械性能,均匀的熔体,即必须在异质混合物中实现不同组分的均匀分散和分布。因此,塑料处理中的混合过程非常重要。但是,为了评估混合过程,必须以合适的方式进行测量,才能根据材料和过程属性进行透彻了解混合过程。这是设计新的混合元件并确保在处理过程中均匀融化的唯一方法,从而提供具有高机械要求的新材料。一种潜在的工具,不仅在定性上,而且在定量上,计算机断层扫描可能是一项有用的技术。但是,由于化学相似的聚合物结构,由一些光元素(C,H,N,O等组成。),不同塑料化合物的X射线衰减特性几乎相同,这就是为什么通过计算机断层扫描进行分析的原因。在这项工作中,通过使用异源聚丙烯(PP) - 聚苯乙烯(PS)混合来研究两种不同的方法来解决此问题。首先,使用氯仿将PS从PP中溶解,其次,将硫酸盐和硫酸钡颗粒添加到PS中,然后将其与PP混合。以这种方式,可以利用微型层析成像分析两个混合组分的体积分布,并可以量化混合物质量。
关闭原材料的回路流过循环经济,从而找到可持续的难治性解决方案是Rhi Magnesita的一个基本战略支柱。在过去的几年中,已经采取了重大努力将这种方法转化为枪支混合物。主要的挑战是实施大量的圆形原材料,同时将枪支混合物的主要特性保持在相同的水平,例如耐火性能,粘合性能和机械处理。通过在系统的开发过程中遵循这些标准,可以创建一种新的可持续枪支混音组合,而产品碳足迹最高为85%。在主要钢生产单元的强烈而全面的试验阶段,即电弧形炉,基本氧气炉和梯子,可以充分证明这一新的难治性概念。
在本论文中,将理论和变异方法应用于强烈相互作用的超低原子气和原子薄的半导体的几个和多体问题。在颗粒的强烈相互作用的混合物中,研究了一种物种对另一种物种的恢复效应,以研究不同的准颗粒形成与与此类颗粒外观相关的相关量子相之间的竞争。追溯到费米极化物问题,在该问题中,杂质与费米子颗粒的浴相互作用,本论文中介绍的大部分工作可以理解在分子状态之间的过渡的背景下,在分子状态之间过渡,在该状态下,沐浴粒子与杂质的杂物紧密地结合了杂物,以及由Quassipartile构成的Quasiparticle,以及由诸如沐浴的衣服饰演的,由沐浴式的服装。由于这些准颗粒之间的能量差距很小,因此在费米极化物问题中获得的见解以研究Fermi-Fermi和Bose-Fermi混合物的相图。首先,使用功能重归其化组(FRG)研究了二维和三维玻色纤维FERMI混合物的相图。三体相关性,该方法适合治疗玻色子和费米子的有限密度种群以研究分子相。同时分析了实验数据,以表征三维玻色纤维纤维混合物中遇到的超流体到正常过渡。使用自洽,频率和动量分辨的FRG AP-PRACH用于预测过渡点。然后,将这种FRG方法改进,利用其分析结构,以使用精确的分析延续以降低的计算成本以任意复杂频率获得绿色函数。这用于研究低洼激发态的动量依赖性衰减速率,并对拉姆西和拉曼测量进行了预测。一种随机变异方法用于研究少数身体问题的结合状态形成。前体,我们发现有限的相互作用范围以及构造可以极大地增强与超级流动p -Wave -Wave配对相关的三聚体的形成。最后,在强烈耦合的玻色纤维混合物的研究中获得的见解被杠杆化,以研究过渡金属二分法生成层的二维侵蚀性中的超导性。在这里,研究了bose-fermi混合物的强耦合物理,研究了玻色子诱导的相关性,以作为诱导/增强与较高临界温度的超级流体配对的手段。
基于生物的混合物(BBA)正在成为一种有前途的混凝土添加剂类别,它是一种更具可持续性且对环境友好的替代品,用于传统的化学混合物。BBA源自各种自然或生物学来源,包括植物,动物和微生物,在增强几个关键领域的混凝土性能特征方面表现出了潜力。本综述文章提供了对BBA的深入探索,并根据其源头和生产方法对不同类型的BBA进行了详细分类。然后,它深入研究了用于评估BBA的性质和性能的各种表征技术,从而提供了对它们对混凝土的可加工性,强度,耐用性和流变学影响的见解。本文还讨论了BBA的各种应用领域,突出了它们在建筑行业中的多功能性和潜力。它进一步识别并讨论了与使用BBA相关的挑战,例如与与不同类型的水泥和混凝土,储存和保质期考虑,质量控制和标准化问题以及具有成本效益的问题相关的问题。总而言之,审查强调,尽管BBA具有巨大的希望,可替代传统的化学混凝土化学混合物,但需要进行更多的跨学科合作和研究来克服确定的挑战并充分实现其潜力。本文呼吁进行进一步的研究,重点是优化BBA的生产和应用程序,并开发标准化的测试和质量控制程序。
氢(H 2)是一种干净的燃料和能量过渡到绿色可再生能源的关键促进器,到2050年才能实现零排放的方法。地下H 2存储(UHS)是一种重要的方法,为低碳经济提供了一种永久解决方案,以满足全球能源需求。但是,UHS是一个复杂的程序,在该过程中,由于与垫子气和储层液混合,可以影响H 2污染,孔尺度散射和大规模存储容量可能会受到H 2污染的影响。文献缺乏对现有热力学模型的全面研究,以计算H 2蓝色混合物的准确传输特性对于有效设计各种H 2存储过程所必需的必不可少的混合物。这项工作基于国家(EOSS),彭 - 鲁滨逊(PR)和Soave Redlich-kwong(SRK)(SRK)及其对波士顿 - 马西亚斯(PR-BM)和Schwartzentruber-Renon(SRK)的修改以及其在可靠性方面的可靠性,并预测热液的属性,并涵盖了Hyphersical propertial hyphers, C 2 H 6,C 3 H 8,H 2 S,H 2 O,CO 2,CO,CO和N 2除了基于Helmholtz-Energy的EOSS(即PC-SAFT和GERG2008)。基准模型反对涉及较大压力(0.01至101 MPa),温度(92 K至367 K)和摩尔级分(0.001至0.90)h 2的蒸气 - 液平衡(VLE)的实验数据。这项工作的新颖性在于基准和优化上述EOSS的参数,以研究VLE信封,密度和其他关键运输特性,例如热容量和Joule -joule -joule -thomson h 2混合物的Thomson系数。结果突出了依赖温度的二进制相互作用参数对嗜热物理特性的计算的显着影响。SR-RK EOS在立方EOSS中与均方根误差和绝对平均偏差之间的VLE数据表现出最高的一致性。PC-SAFT VLE模型显示出与SR-RK相当的结果。敏感性分析强调了杂质对在H 2存储过程中更改H 2蓝色流的热物理行为的高影响。©2022作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
最近,铅卤化物钙钛矿吸引了显着的注意力,作为光电化学(PEC)太阳能分裂的有前途的吸收材料。然而,界面处的电荷积累诱导的离子迁移导致钙钛矿降解和效率损失。为了抑制电荷积累并改善了钙钛矿光阳极的PEC性能,提出了一种简单的界面工程,通过用聚乙基乙酰基(PEIE)(PEIE)和氯贝苯甲酸(CBSA)的混合物来装饰SNO 2 /Perovskite界面。混合的CBSA + PEIE处理有效地钝化了SNO 2中的氧空位,并调整了SNO 2和钙钛矿之间的带对齐。混合物处理的协同作用促进了在SNO 2 /Perovskite界面上有效的载体提取,增强了PEC性能并提高设备的稳定性。Perovskite Photoanode表现出令人印象深刻的偏置光子至电流效率为12.9%,出色的耐用性为225 h。此外,使用所有Perovskite光电子界实现了公正的太阳能分裂,从而导致显着的无辅助太阳能到氢气的效率为10.9%,并且连续22 h稳定的操作。
保护剂和系统性杀菌剂有两种一般类型的杀菌剂类型:保护剂和系统。保护剂杀菌剂(有时称为接触),在施用后留在植物表面上,并且不穿透植物组织。系统性杀菌剂被吸收到植物中,并在植物组织中移动。某些杀菌剂是局部系统性的,在植物内仅移动有限的距离。dicarboximide杀菌剂是该组的好例子。某些系统的系统是适度的系统性,例如DMI杀菌剂,而另一些系统是高度系统性的,并且很容易通过植物的血管运输系统(例如磷酸盐)移动。高度移动系统的示例包括苯甲酰唑。大多数系统性杀菌剂仅在植物组织中向上移动。只有一个全身杀菌剂(Fosetyl-Al)在双向上移动(从叶到根,反之亦然)。全身性杀真菌剂有时会在菌合感染该植物后会抑制杀菌剂,而在感染开始有效之前,植物表面上必须存在保护剂杀真菌剂。配方多种杀真菌产品可在多种配方中获得。用于保护剂杀菌剂,可喷涂的配方(可润湿粉末,可流动,可流动,可散发颗粒,可乳化浓缩物)通常比颗粒状配方提供更好的疾病控制。可喷涂的配方即使对于在植物组织中没有高度流动性的系统物质中,也可以优于颗粒状配方。喷雾设备比颗粒状吊具更透彻地覆盖植物表面。更彻底的覆盖范围可以更好地控制真菌感染叶子。如果应用杀菌剂喷雾剂来控制根病,通常建议在杀菌剂干燥之前轻轻灌溉以将其洗净到根区域中。同样,如果将颗粒状杀菌剂应用于控制根部疾病,请应用于干草皮并在施用后灌溉。杀菌剂混合物为草皮疾病控制制造的几种产品是包含两种或多种活性成分的预包装混合物。混合物提供了一些防止杀菌剂耐药性的保护,通常提供针对草皮疾病的更广泛的活性。预包装的混合物提供了不兼容的便利性和保证,而现场储罐混合则提供了更大的杀菌剂选择和应用率的灵活性。