_________________________ 注意:本手稿由 UT-Battelle, LLC 根据与美国能源部签订的合同编号 DE-AC05-00OR22725 撰写。美国政府保留且出版商在接受文章发表时承认美国政府保留非排他性、已付费、不可撤销的全球许可,以出于美国政府目的出版或复制本手稿的已出版形式,或允许他人这样做。能源部将根据 DOE 公共访问计划 ( http://energy.gov/downloads/doe-public-access-plan ) 向公众提供这些联邦资助研究的成果。† 与本工作相关的临时专利申请已提交,美国临时申请序列号为 63/332,403,提交日期为 2022 年 4 月 19 日。
AB 先进生物燃料 AFDC 替代燃料数据中心 AFV 替代燃料汽车 BBD 生物质柴油 BIP 生物燃料基础设施伙伴关系 CAA 清洁空气法案 CAFE 企业平均燃油经济性 CARD 农业和农村发展中心 CaRFG3 加州第三阶段新配方汽油 CB 纤维素生物燃料 CCC 商品信贷公司 CNG 压缩天然气 EPA 美国环境保护署 EPAct 能源政策法案 EIA 美国能源信息署 EV 电动汽车 FCEV 氢燃料电池电动汽车 FFV 灵活燃料汽车 GHG 温室气体 HBIIP 高混合基础设施激励计划 HEV 混合动力电动汽车 ICE 内燃机 MTBE 甲基叔丁基醚 MY 车型年份 NACS 美国便利店协会 PHEV 插电式混合动力电动汽车 RF 可再生燃料 RFS 可再生燃料标准 RIN 可再生识别号 RVO 可再生量义务 RVP 雷德蒸气压 SRE 小型炼油厂豁免 USDA 美国农业部 UST 地下储罐 VOC 挥发性有机化合物
抽象的孩子在整个发展过程中都暴露于许多痕量元素。鉴于他们的ubiquity和对儿童的神经发展产生影响的潜力,这些暴露是公共卫生的关注点。这项研究试图确定使用前瞻性队列中操作测试的学习行为中与痕量混合物相关的定义。我们包括322名在墨西哥城招募的6-7岁的参与者,其中包含有关产前微量元素测量值(第三个孕乳铅和锰水平和锰水平,以及&尿液镉和砷水平),人口统计学协变量,以及逐步的重复获得(IRA),一项可观的学习任务。加权分位数总和(WQS)回归模型用于估计所有四个痕量元素和IRA性能的混合物的联合关联。表现受到不同元素
©2020。此手稿版本可在CC-BY-NC-ND 4.0许可下提供http://creativecommons.org/licenses/by-nc-nc-nd/4.0/
我们报告了一项系统的研究,该系统研究盐浓度及其阳离子价对模型的混合物的多种等分和转运性能,其混合物具有单价(Lino 3)的硝酸盐(lino 3),二价(mg(no 3)2和Ca(no 3)2和Ca(no 3)2)和(no 3)3)salts。由适当的实验技术确定的这些特性包括密度,声速,折射率,表面张力,电导率和粘度。单粒子动力学和径向分布函数也通过分子动力学模拟进行了分析。在Vogel-Fulcher-Tammann框架中研究了电导率的温度依赖性,我们获得了有效的激活能量,脆弱性指数和Vogel温度。此外,我们进行了高温Arrhenius分析,并计算了电导率和粘度的激活能。最后,获得了不同混合物的分数Walden规则的指数,并分析了系统的离子和脆弱性,证明所有混合物都是亚离子和脆弱的。在其第一个溶剂化壳中建立的由添加盐的阳离子和硝酸盐阴离子组成的长寿命阴离子聚集体的氢键网络的变形以及长寿命的阴离子聚集体的形成是对分析特性产生的深影响。细节分析了盐阳离子的表面电荷密度对溶液的结构和运输特性的作用,并与离子液体极性纳米孔(纳米结构溶剂化)中盐物质的溶剂化有关。2022作者。由Elsevier B.V.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
风力涡轮机主轴承的疲劳寿命受用作润滑剂的油脂状态的极大影响。遗憾的是,由于与降解机制和油脂批次质量变化相关的不确定性,通过预测模型监测油脂状况可能是一项艰巨的任务。最终,油脂质量变化导致的油脂寿命预测差异可能导致轴承疲劳寿命预测不准确。问题的复杂性需要一种新颖的解决方法;在本文中,我们提出了一种新的混合物理信息神经网络模型。我们构建了一个嵌入为循环神经网络单元的轴承疲劳损伤累积混合模型,其中用于轴承疲劳损伤累积的降阶物理模型和表示油脂降解机制的神经网络,该机制量化最终加速轴承疲劳的油脂损伤。我们概述了一种两步概率方法来量化油脂质量变化。在第一步中,我们利用混合模型来学习当质量为分布中位数时的油脂降解。在第二步中,我们采用第一步中的中值预测器,并通过检查每台风力涡轮机的油脂样本来跟踪质量分布的分位数。我们最后通过数值实验展示我们的方法,在该实验中,我们测试了质量变化的随机实现和样本数量的影响
气体填充,激光驱动的“倒入电晕”融合靶标吸引了作为研究动力学物理学的低温中子源和平台的兴趣。在调查的填充压力下,从壳体中弹出的颗粒可以在碰撞之前深入渗透到气体中,从而导致在气体 - 壳界面上显着混合。在这里,我们使用动力学离子,流体 - 电子混合粒子中的模拟来探索该混合物的性质。模拟显示出弱碰撞静电冲击的特性,因此,强烈的电场将壳离子加速到罕见的气体中,并反映上游气体离子。这种互穿的过程是由碰撞过程介导的:在较高的初始气压下,较少的壳颗粒进入混合区域并到达热点。通过中子产量缩放与气压可检测到这种效果。中子屈服缩放的预测与在欧米茄激光器设施中记录的实验数据表现出极好的一致性,这表明一维动力学机制足以捕获混合过程。
订购:info@abclonal.com 仅用于研究目的。不可用于人类或动物的治疗或诊断目的。网址:www.abclonal.com 请访问 http://abclonal.com 获取推荐产品的完整列表。
摘要 量子信息平台在多体纠缠控制和量子纠错实现方面取得了巨大进展,但在同一装置中实现这两项任务仍然是一个挑战。本文,我们提出将两种超冷原子混合作为具有长距离纠缠门的通用量子计算平台,同时为量子纠错提供天然候选方案。在提出的装置中,一种原子实现长度可调的局部集体自旋,这构成了信息的基本单位。第二种原子产生声子激发,用于纠缠集体自旋。最后,我们讨论了有限维版本的 Gottesman–Kitaev–Preskill 代码,以保护集体自旋中编码的量子信息,为在超冷原子系统中实现通用容错量子计算开辟了可能性。