– 各种泵和电机可直接从钻机控制,钻机的钻井液供应也是如此。 – 钻机和混合装置上的显示器可同时持续监控各种功能,例如动力组的运行状态、阀门的位置以及收集、混合和淡水箱的填充水平。 – 智能控制技术还可确保填充水箱的平稳过程:达到最大容量时,填充过程会自动停止,并防止水箱溢出。 – 作为一种选择,可以集成摄像头来直观地监控筛子的布置,确保高度分离和完美运行。 通过清晰的显示轻松监控所有过程
电池供电的容器还进入了渡轮横梁短或带有内燃机(ICE)的混合装置中的运输部门。短船,例如渡轮艾伦(Ellen),奥罗拉(Aurora)和泰乔·布拉(Tycho Brahe),已经从事商业运营了几年。4,5这些渡轮的安装容量约为4 MWH,足以使船只被部署的短海通道。2023年,Cosco在长江河上运行的电池电容器容器,安装了50 MWH的电池容量。6,要允许足够短的持续时间进行能源补充,船只设计师预见了使用集装箱电池解决方案进行电池交换概念。这个概念已经用于在莱茵河上运行的内陆水道容器,但规模较小。7
摘要-本文研究了可再生燃烧厂的优化设计,目的是确保 Gorgor 站所需的负荷。本研究的目的是同时最小化所设计的混合装置在设计系统运行期间的成本。获取有关太阳辐射强度和该地区风力强度的信息并将其应用于系统模拟。预期目标函数包括投资成本、更换成本和维护成本。设计阶段结束后,主要目标是检查该项目从电网利用的经济效益,并将其与可再生电力系统进行比较,以及计算可再生电力的初始投资回报。首先,使用可再生电力系统计算该项目用电的初始成本,然后使用国家电网确定项目成本。此外,通过计算每种组合的年当前成本,可以得到每种模式的投资回报。对可再生能源使用的各种选择进行了单独和组合调查。对每个选项进行技术经济分析,最终提出最佳方案。关键词:Gorgor电站,电能审计,优化,设计,经济分析。
最大化的火焰表面积允许快速释放大量能量。这样,即使在空气预热和炉温较高的情况下,火焰温度也能保持在较低水平,并防止过量产生 NO x 。接触喇叭形燃烧室的火焰在燃烧室中心产生负压。负压由流入的炉内气氛补偿,炉内气氛又通过火焰排放到外部。炉内气氛还能确保火焰冷却。平焰燃烧器可根据所需的性能配置提供各种尺寸。喷嘴混合燃烧器头是平焰燃烧器 BIO..K(图 4)的重要组成部分。混合单元的特殊、久经考验的几何形状确保在燃烧器所需的容量范围内实现精确的化学计量燃烧。两种燃烧器类型都具有低火喷枪,用于逐步扩大控制范围和点火。在主燃烧器关闭的情况下,低火喷枪可实现可重复的保持能力。这样即使在保温模式下也能确保低 O 2 炉内气氛。由 SiC 陶瓷材料制成的混合头保护器可保护混合装置免受由于炉内气氛渗透而导致的热过载 - 特别是在保温模式下。在 Kromschröder 自己的实验室中,石英的几何形状可最佳地适应特定应用的特殊要求。
随着纳米技术的进步,创新的光子设计与功能材料相结合,提供了一种获取、共享和有效响应信息的独特方式。研究发现,在太赫兹 (THz) 超表面芯片上简单沉积 30 纳米厚的钯纳米薄膜,该芯片具有 14 纳米宽的非对称材料和几何结构的有效纳米间隙,可以跟踪原子间和界面气体-物质相互作用,包括气体吸附、氢化(或脱氢)、金属相变和独特的水形成反应。通过模拟和实验测量进行的组合分析证明了独特的纳米结构,从而以实时、高度可重复和可靠的方式导致显著的光物质相互作用和相应的 THz 吸收。还使用模拟正常温度和压力的系统控制三元气体混合装置彻底检查了受氢气暴露影响的金属的复杂晶格动力学和固有特性。此外,利用新的自由度来分析各种物理现象,从而引入了能够追踪导致水增长的未知水形成反应隐藏阶段的分析方法。单次曝光波谱强调了所提出的 THz 纳米级探针的稳健性,弥合了基础实验室研究与工业之间的差距。
摘要。我们提出了一个计算框架,它结合了深度和颜色(纹理)模态来进行 3D 场景重建。场景深度由采用飞行时间原理的低功率光子混合装置 (PMD) 捕获,而颜色(2D)数据则由高分辨率 RGB 传感器捕获。这种 3D 捕获设置有助于 3D 人脸识别任务,更具体地说,有助于深度引导图像分割、3D 人脸重建、姿势修改和规范化,这些都是特征提取和识别之前的重要预处理步骤。两种捕获的模态具有不同的空间分辨率,需要对齐和融合,以形成所谓的视图加深度或 RGB-Z 3D 场景表示。我们特别讨论了系统的低功耗操作模式,其中深度数据看起来非常嘈杂,需要在与颜色数据融合之前进行有效去噪。我们建议使用非局部均值 (NLM) 去噪方法的修改,该方法在我们的框架中对复值数据进行操作,从而提供针对低光捕获条件的一定稳健性和对场景内容的自适应性。在我们的方法中,我们对范围点云数据实施双边滤波器,确保数据融合步骤的非常好的起点。后者基于迭代理查森方法,该方法用于使用来自颜色数据的结构信息对深度数据进行有效的非均匀到均匀重采样。我们展示了基于 GPU 的框架的实时实现,可产生适合面部规范化和识别的高质量 3D 场景重建。关键词:ToF、2D/3D、深度、融合、去噪、NLM、面部、ICP
为了获得均匀的混合物,必须将树脂和硬化剂预热至约 50 至 60°C。必须使用平铲和干净的一次性容器将两种成分混合,直到获得均匀一致颜色的均匀物质,无空气、块状或条纹,避免混入空气。它还可以在低转速下进行机械混合,以防止过多的空气夹带。在一些对电气要求较高的应用中,必须在真空室中对组件进行混合和脱气。真空下的混合时间取决于质量,为0.5至3.5小时。在自动配料和混合装置中,两种组分都必须在储罐中以 2 mbar 的压力脱气至少 45 分钟。一旦组件脱气完毕,就必须将其移除以防止负载沉淀。使用静态混合器喷嘴进行配料和混合后,可以将其转移到 10 – 15 mbar 的真空罐中,或者直接转移到 APG 工艺中的热模具中。在低于25°C的温度下,混合料的有效适用期为24至48小时。传统的混合容器应至少每周清洗一次或在工艺结束时清洗。对于较长的生产期,建议将储罐和传导管冷却至 18°C 的温度,以防止化合物过早硬化。对于压力凝胶工艺 (APG),可通过向总树脂中添加至少 0.2% 的 DY 062 促进剂来调整反应性。应注意,添加促进剂会缩短混合物的使用寿命。 。
我们使用拓扑绝缘子(TI)BI 2 TE 3和高温超导体(HTSC)混合装置来研究Ti中接近性诱导的超导性(PS)。应用超导体YBA 2 Cu 3 O 7-δ(YBCO)使我们能够访问该现象的更高温度和能量尺度。杂交设备中的HTSC表现出pseudogap状态的T> T C状态,该状态转化为t 转化过程已反映在Ti收集的拉曼光谱中。 互补的电荷运输实验表明,Ti中接近性诱导的超导间隙的出现以及HTSC中降低的超导间隙的出现,但没有伪模的签名。 这使我们得出结论,拉曼光谱揭示了伪PSEUDOGAP状态的形成,但无法区分Ti中的接近性诱导的超导状态与HTSC中以减少间隙为特征的HTSC中的超导状态。 我们的实验结果表明,拉曼光谱是对经典电荷运输实验的补充技术,并且是研究BI 2 TE 3中接近性诱导的超导性的强大工具。转化过程已反映在Ti收集的拉曼光谱中。互补的电荷运输实验表明,Ti中接近性诱导的超导间隙的出现以及HTSC中降低的超导间隙的出现,但没有伪模的签名。这使我们得出结论,拉曼光谱揭示了伪PSEUDOGAP状态的形成,但无法区分Ti中的接近性诱导的超导状态与HTSC中以减少间隙为特征的HTSC中的超导状态。我们的实验结果表明,拉曼光谱是对经典电荷运输实验的补充技术,并且是研究BI 2 TE 3中接近性诱导的超导性的强大工具。
• CU 博士论文工作 2018 年 8 月至今 直驱发电机比齿轮发电机具有更高的可靠性;但是,它们通常非常大(10MW 涡轮机重达 220 吨)。其中大部分质量是结构支撑材料。通过实施适合增材制造的拓扑优化和晶格结构,发电机重量可减轻多达 50%。此外,通过集成先进的冷却方法,可以显着提高功率密度,从而进一步减轻重量并降低机器成本。我制造了一个定制的 3 kW 发电机来测试各种冷却技术所能实现的最大电流密度,并使用这些数据来支持高功率密度 12 MW 直驱风力涡轮发电机的分析设计。我还研究了增材制造的空气质量和糊料挤出工艺的建模。 • HP Inc 金属 3D 打印实习生 2019 年 5 月 - 2019 年 8 月 在 HP Inc 的第二次实习中,我致力于开发用于现场打印机监控的方法和指标,以改善分层缺陷和各向同性。粉末粘合剂喷射本质上是一个分层过程,这会导致烧结缺陷。我创建了一个 MATLAB 脚本来自动分析烧结横截面以确定定量打印指标 • HP Inc 金属 3D 打印实习生 2018 年 5 月 - 2018 年 8 月 在 HP Inc 工作期间,我开发了一种高速成像装置,以更好地了解 3D 打印过程。我研究了粉末粘合剂喷射应用中的粉末-粘合剂相互作用。金属打印提出了聚合物粉末-粘合剂喷射中未曾见过的独特挑战;因此,我的工作是为了更好地理解这些独特的挑战。 • RIT 硕士论文工作 2016 年 8 月 - 2018 年 5 月 在我的硕士论文中,我使用金属增材制造的微结构来增强池沸腾传热。RIT 与 Vader Systems 合作,获得了第一台液体磁喷射 3D 打印机(现为 Xerox ElemX)。该打印机使用线材将熔融的铝液滴一滴地喷射到构建平台上,以产生高沉积速率和高分辨率。在我的项目中,我使用这项技术构建了新颖的微结构,以利用增材制造实现的气泡设计将池沸腾传热提高多达 7 倍•微流体高级设计项目(HP 赞助)2017 年 8 月 - 2018 年 5 月通过 RIT 进行的多学科项目,我们小组在惠普公司的支持下提出了自己的项目。我们开发了一种方法来创建一种低成本的微流体装置以评估层流的混合。目前,很难混合层流状态(例如生物医学应用所需的层流状态)。通过在 FAB 中的硅晶片上创建集成电阻加热器,并与低成本封装方法接口实现密封,可以创建一个流动混合装置。混合机制来自于实现类似于 HP 专利热喷墨技术的局部亚稳态沸腾。该项目是一个正在进行的研究项目,旨在确定其可行性和影响混合的参数。• NREL 科学本科实验室实习生 2017 年 5 月 - 2017 年 8 月在 NREL 工作期间,我使用有限元分析 (ANSYS) 来确定减轻大型直驱发电机重量的潜力。这可以减少 24% 的质量,同时还可以将径向偏转减少 60%。最佳的添加方法是粉末粘合剂喷射,并使用多喷射打印创建实验模型以证明设计的可打印性。我们的研究产生了两份会议论文集和两项 ASME 论文奖。• 在 IBM 与高级热能效率实验室合作 2016 年 5 月 - 2016 年 8 月在 IBM,我的工作是密封一个实验性的两相测试回路,该回路之前出现泄漏,已停运一年半。这涉及使用与 Matlab 脚本交互的 LabVIEW 数据采集来确定 Swagelok 系统是否长时间保持真空。此外,我与其他实习生和热工程师合作设计了一张流量卡,以模拟主机中的实际压降。然后,这张流量卡被 3D 打印出来并进行测试,以查看它是否对齐