对拟议的回弹板发射机(ROBT)方法的评估证明,车辆内部的电磁环境与完美的混响室不同。被期望为吸收材料,例如座椅和室内装饰,可能会阻止与混响室类似的田间分布。仍然,该项目的目的是找到一种优于常规方法的测试方法,可以指出,Robt方法是一种适当的选择,因为它可以将电子曝光到各向同性辐射。这是从本文介绍的两种措施中找到的:预期的各向同性E ISO,一个对电场成分的相对度量和D DOF,对混响室内空间分布的定量。
报告了 N P L 体育场混响室在模式调谐操作中的测量结果和室特性,使用微型 3 轴电场传感器。结果基于对 2.5 Hz 和 8.2 GHz 的机械壁搅拌电场强度的测量搅拌器数据的分析。测量的概率分布和各种相关样本统计与理想室的理论结果进行了比较,显示出极好的一致性。本研究证实并扩展了基于功率密度测量的早期结果。此外,从场探测器数据中获得了总场各向异性和场不均匀性水平,量化了混响性能。还得出了一些新的理论结果。
过去的一年是 CAV 转型的一年。我们恢复了面对面的年度研讨会,但增加了在线出席和讲座直播——我们打算在今年和未来继续这一功能。我们继续在 YouTube 频道 (https://www.youtube.com/channel/UCG1jhLJmP3urA7mDYoiq1aQ) 上存档我们的研讨会讲座以及定期的技术研讨会。我们的声学研究生课程换了一位新主任——安德鲁·巴纳德博士。安德鲁是一名校友,在密歇根理工大学工作数年后,他回来领导我们的课程进入新的技术领域。我们还开始改造我们的 CAV 和声学实验室空间,与建筑师合作,在我们计划在西校区建造的新工程大楼中设计改进的实验室。宾夕法尼亚州立大学的研究人员将可以使用改进的消声室和混响室,以及声功率传输损失窗口。
机械工程系的教职员工活跃于声学和超声声学、航空学、生物工程、体育工程、产品设计和开发、工业能源效率、太阳能、先进材料、机电一体化、微机电系统、冲击波物理、机器人技术、热流体工程和振动等领域。该系设有六个研究席位,提供硕士和博士课程,让学生在国际知名研究人员的指导下,在包括众多尖端研究实验室在内的基础设施中工作。该系以其设施而闻名,其中包括耦合消声室和混响室、风洞(包括消声风洞)、材料和结构表征设备、超声波扫描仪、控制器原型平台,其几名成员是 3IT 的一部分,这是一个独特的微制造基础设施,包括 1,600 平方米的洁净室,以及其教学设计方法和丰富的创业成分,由众多合作伙伴提供支持。
EHPA 欢迎对声功率水平进行积极修正,但空气对水 HP 的测量必须在室外温度 +7°C 下使用压缩机和风扇设置为 B 条件(2°C)进行,但不能在室外温度 +2°C 下进行。正如我们 2021 年 5 月的立场文件中所解释的那样,我们认为测试条件应允许使用标准 EN 12102-1 中已经指定和使用的所有声学通用测试方法,而无需修改测试设施(例如混响室),也不会因低温和/或结霜条件而损坏仪器(声探头、分析仪)。因此,对于使用空气作为热源的热泵,应在 +7°C 下测试室外温度。如果某些设备可以在较低的温度下运行或无法在 B 条件(2°C)的 +7°C t(例如压缩机和风扇速度或阶段)下运行,则制造商应提供测试的室外温度。
需要完善的通信基础设施来促进增长,这是 2020 年欧洲数字议程的一部分。目标包括到 2020 年,所有家庭将拥有 >30 Mbit/s 的互联网接入,50% 的家庭将拥有 >100 Mbit/s 的接入。再加上无线设备的预期增长,将推动核心网络对带宽的需求增加。本 SRT 呼吁开发计量基础设施来支持这一战略。先进的天线和 MIMO 的 OTA 测试带来了重大的计量挑战。目前可用的测试方法使用模拟环境的信道模拟器和混响室。需要不确定性数据来验证自适应系统(如微型卫星、MIMO 和动态定向天线系统)的测试结果,这些系统将出现在未来的 RF 传感器网络和可穿戴天线系统中。纳米卫星代表了一种低成本的空间工程方法,这种方法正变得越来越有吸引力。纳米卫星天线、有效载荷和太阳能电池板系统的测试需要良好的计量和多学科方法。包括无源光网络 (PON) 和 RoF 在内的几种技术已被确定为通信网络“最后一英里”分布的候选技术,这是一个对价格极为敏感的领域。RoF 具有在 60 GHz 频段实现高带宽、短距离、视距通信的潜力。
需要完善的通信基础设施来促进增长,这是 2020 年欧洲数字议程的一部分。目标包括到 2020 年,所有家庭将拥有 >30 Mbit/s 的互联网接入,50% 的家庭将拥有 >100 Mbit/s 的接入。再加上无线设备的预期增长,将推动核心网络对带宽的需求增加。本 SRT 呼吁开发计量基础设施来支持这一战略。先进的天线和 MIMO 的 OTA 测试带来了重大的计量挑战。目前可用的测试方法使用模拟环境的信道模拟器和混响室。需要不确定性数据来验证自适应系统(如微型卫星、MIMO 和动态定向天线系统)的测试结果,这些系统将出现在未来的 RF 传感器网络和可穿戴天线系统中。纳米卫星代表了一种低成本的空间工程方法,这种方法正变得越来越有吸引力。纳米卫星天线、有效载荷和太阳能电池板系统的测试需要良好的计量和多学科方法。包括无源光网络 (PON) 和 RoF 在内的几种技术已被确定为通信网络“最后一英里”分布的候选技术,这是一个对价格极为敏感的领域。RoF 具有在 60 GHz 频段实现高带宽、短距离、视距通信的潜力。
摘要。本文讨论的问题涉及一种新的军事行动——电子战 (EW)。在电子战的背景下,高功率微波 (HPM) 技术目前能够远程干扰操作,直到电路重置或电子系统被破坏。本文探讨了使用 HPM 脉冲的保护和防御问题。这项研究使用了波兰国家核研究中心开发的紧凑型 HPM 发生器。它的功率为 3MW,工作频率为 2.9 GHz,脉冲持续时间为 3 μs,发射重复率为 1、50、100 和 250 Hz。开发的 HPM 脉冲保护系统在训练场的开放空间、陆地和海洋部分以及带有混响室的电路中受到强烈的场暴露。使用高功率 D 点探头测试每个测量站上产生的场的分布,数据通过光纤链路从该探头传输到记录系统。在所有情况下,这种分布都是重复的。带有记录器的现场探头用于测量复合结构内部。业余无人机、手机、相机和使用基于微机械单元的传感器的系统中未受保护的电子系统暴露在外。进行了分析以检查电子电路的运行、暴露于强微波辐射期间引起的影响和发生的现象。发现开发的系统在类似于实际暴露于高功率微波武器的条件下满足设计假设。已经确定了各种辐射束入射空间配置的屏蔽效率。提出的用于保护和防御高功率微波武器影响的系统采用复合混合吸收器技术,能够有效消除电磁脉冲效应。关键词:无人机、电子战、微波定向能武器、电磁兼容性 1. 威胁概述