混合增材制造 (AM) 是指两种金属 AM 技术的组合:粉末床熔合 (PBF) 材料沉积和定向能量沉积 (DED) 附加构建。本研究重点研究了混合 AM 生产过程中 PBF 和 DED 相对沉积方向的不同特性。将混合 AM 制备的样品(即混合样品)的特性与 PBF 或 DED 制备的样品的特性进行了比较。PBF 沉积物的微观结构以铁素体为主,局部可观察到非常细小的残余奥氏体。相反,DED 沉积物的微观结构中均匀形成板条马氏体和残余奥氏体。两种过程中微观结构的不同归因于冷却速度的差异。在 DED 沉积物中,由于残余奥氏体分数高,显微硬度显著降低。然而,在混合样品中,由于长期沉积的时效热处理,HAZ 中的显微硬度迅速增加。 PBF和DED样品的主要磨损机制分别是氧化磨损和塑性变形。
增材制造 (AM) 仍是一项相对较新的技术。与从毛坯中去除材料的传统加工不同,AM 用于从空工作空间开始将原料逐层熔合成复杂形状。AM 能够制造复杂的零件几何形状和零件变体,而几乎无需额外制造成本。以前不可能制造的几何形状现在可以作为设计选项使用,例如弯曲的内部通道、复杂的晶格结构和设计的表面孔隙率 - 所有这些都可以重复生产。电子束粉末床熔合 (PBF-EB) 是一种 AM 方法,其中使用电子束将细颗粒粉末加工成零件。自诞生以来,PBF-EB 一直受到可供加工的材料数量的限制。本论文的目的是探索使用 PBF-EB 加工不锈钢的可能性。这项工作的重点是开发高效加工参数,目的是获得高密度成品材料,并了解工艺参数与零件由此产生的微观结构和其他质量方面之间的关系。两种不锈钢粉末,316LN(奥氏体)和超级双相 2507(奥氏体/铁素体),通过各种工艺参数使用各种熔化策略加工成固体零件。在选择一组以高加工速率生产高质量零件的参数之前,对密度、微观结构特征和机械性能进行评估和评定。这项工作的结论是,不锈钢非常适合 PBF-EB 加工,具有宽广的加工窗口。研究还表明,材料性能受所用加工参数的影响很大。对于超级双相不锈钢 2507,制造的部件需要进行制造后热处理才能达到所需的微观结构、相组成和拉伸性能,而 316LN 则可以在更大程度上直接使用,只要使用适当的制造准备和加工参数即可。
I. 构建几何形状对增材制造 316L 零件微观结构发展的影响 A. Leicht、U. Klement、E. Hryha Mater. Charact. 143 (2018) 137–143 II. 零件厚度对激光粉末床熔合制造 316L 零件微观结构和力学性能的影响 A. Leicht、C. Pauzon、M. Rashidi、U. Klement、L. Nyborg、E. Hryha 已提交出版 III. 工艺气体和扫描速度对 L-PBF 制造的薄 316L 结构的性能和生产率的影响 C. Pauzon、A. Leicht、U. Klement、P. Forêt、E. Hryha 已提交出版 IV.扫描旋转对激光粉末床熔合生产的 316L 零件微观结构发展和力学性能的影响 A. Leicht、CH Yu、V. Luzin、U. Klement、E. Hryha Mater。Charact。163 (2020) 110309 V. 工艺参数对激光粉末床熔合生产的 316L 零件微观结构、抗拉强度和生产率的影响 A. Leicht、M. Rashidi、U. Klement、E. Hryha Mater。Charact。159 (2020) 110016 VI. 通过增加层厚度提高 316L 激光粉末床熔合的生产率:对微观结构和力学性能的影响 A. Leicht、M. Fischer、U. Klement、E. Hryha、L. Nyborg 已提交出版
空中无人机越来越被视为在安全关键环境中检查的宝贵工具。在采矿行动中,这对人类运营商带来了动态和危险的环境,这一点都没有。无人机可以在许多情况下部署,包括有效的测量以及搜救任务。在这些动态上下文中运行是在挑战,因此需要无人机控制软件在运行时检测和适应条件。为了帮助开发这样的系统,我们向我们提出的系统是一个模拟测试床,用于调查矿山中无人机的自适应控制器。Aloft使用凉亭利用机器人操作系统(ROS)和模型环境来提供基于物理的测试。仿真环境是由在矿山的物理模型中收集的3D点云构造的,并包含在现实世界中预期的特征。高举允许研究社区的成员将自己的自适应控制器部署到无人机的控制循环中
授权供以下组织和/或服务使用:所有 NHS England 和 NHS Improvement 委托的巴斯和东北萨默塞特、斯温顿和威尔特郡、布里斯托尔、北萨默塞特和南格洛斯特郡、康沃尔和锡利群岛、德文郡、多塞特郡、格洛斯特郡和萨默塞特郡内的免疫接种服务。授权限制本患者群体指令 (PGD) 只能由第 3 节中确定的、经其组织指定在其下行医的注册医疗保健从业人员使用。必须使用 NHS England 和 NHS Improvement (South West) 授权的最新的最终版本。本 PGD 包括整个国家免疫计划中个人的疫苗接种。本 PGD 的用户应注意,当他们被委托为某些群体进行免疫接种时,本 PGD 并不构成为他们被委托为之免疫的群体之外提供免疫接种的许可。
Engerix B 是一种用于预防乙肝感染的疫苗。它还可以帮助预防丁肝感染。这种疫苗可以给成人和 16 岁以上的青少年接种。在特殊情况下,也可以给 11 至 15 岁的儿童和青少年接种(见第 3 节)。乙肝是一种由病毒引起的肝脏传染病。有些人体内有乙肝病毒,但无法摆脱它。他们仍然可以感染其他人,被称为携带者。这种疾病是通过病毒在接触感染者的体液(通常是血液)后进入人体传播的。如果母亲是病毒携带者,她可以在出生时将病毒传给她的婴儿。也有可能通过无保护的性行为、共用注射针头或使用未正确消毒的医疗设备治疗等方式从携带者那里感染病毒。该病的主要症状包括头痛、发烧、恶心和黄疸(皮肤和眼睛发黄),但大约十分之三的患者没有患病迹象。在感染乙肝的人中,十分之一的成人和多达十分之九的婴儿将成为病毒携带者,并可能进一步发展为严重的肝损伤,在某些情况下甚至会患上肝癌。 Engerix B 的作用原理 Engerix B 含有少量乙肝病毒的“外壳”。这种“外壳”不具有传染性,不会使您生病。 • 接种疫苗后,它会触发人体的免疫系统做好准备,以抵御未来的这些病毒 • 如果您已经感染了乙肝病毒,Engerix B 将无法保护您 • Engerix B 只能帮助您预防乙肝病毒感染 2 接种 Engerix B 前需要了解的信息
属于《绿皮书》第 19 章列出的临床风险人群类别,例如: o 慢性(长期)呼吸系统疾病,如哮喘(需要持续或重复使用吸入或全身性类固醇,或之前病情恶化需要住院治疗)、慢性阻塞性肺病 (COPD) 或支气管炎 o 慢性心脏病,如心力衰竭 o 3、4 或 5 期慢性肾病 o 慢性肝病 o 慢性神经系统疾病,如帕金森病或运动神经元疾病 o 学习障碍 o 糖尿病 o 无脾或脾功能障碍 o 因疾病(如 HIV/AIDS)或治疗(如癌症治疗)导致的免疫系统减弱 o 病态肥胖成人(16 岁以上),BMI ≥ 40kg/m 2 • 年龄在 2 岁至 18 岁以下的儿童和青少年
Engerix B 是一种用于预防乙肝感染的疫苗。它还可以帮助预防丁肝感染。这种疫苗可以给新生儿、儿童和 15 岁以下的青少年接种。乙肝是一种由病毒引起的肝脏传染病。有些人体内有乙肝病毒,但无法摆脱它。他们仍然可以感染其他人,被称为携带者。这种疾病是通过接触感染者的体液(通常是血液)后病毒进入人体传播的。如果母亲是病毒携带者,她可以在出生时将病毒传给她的婴儿。也有可能通过无保护的性行为、共用注射针头或使用未正确消毒的医疗设备治疗等方式从携带者那里感染病毒。这种疾病的主要症状包括头痛、发烧、恶心和黄疸(皮肤和眼睛发黄),但大约十分之三的患者没有患病迹象。在感染乙肝病毒的人中,每 10 个成人中就有 1 个和每 10 个婴儿中就有 9 个会成为病毒携带者,并可能导致严重的肝损伤,有些甚至会引发肝癌。 Engerix B 的作用原理 Engerix B 含有少量乙肝病毒的“外壳”。这种“外壳”不具传染性,不会使您生病。 • 接种疫苗后,人体的免疫系统会做好准备,在未来抵御这些病毒 • 如果您已经感染了乙肝病毒,Engerix B 将无法为您提供保护 • Engerix B 只能帮助您预防乙肝病毒感染 2 接种 Engerix B 前须知
使用离散元法分析填充床热能存储中的热棘轮现象 填充床热能存储 (TES) 在能源技术中发挥着重要作用。在能量吸收过程中,热空气从上到下流过 TES 的内容物。在加热过程中,储热介质(散装材料)的膨胀会导致储热罐壁上的应力增加。这些发生的负载将通过离散模型来考虑。此外,有趣的是,在几个加载和卸载过程中负载如何变化(热棘轮现象)。在本文中,将研究如何使用 DEM 方法对这种行为进行建模。关键词:热能存储(TES)、离散元法(DEM)、热棘轮、热应力、校准 1. 引言 在 NEFI(工业新能源)项目过程中,应利用水泥厂约 300-400°C 的废热进行能量回收。为此,必须实施气流填充床热能存储 (TES) [10] 形式的存储。自 2018 年以来,维也纳技术大学工程设计和材料处理系 (KLFT) 与能源系统和热力学研究所 (IET) 合作开展项目,致力于实现这一目标。简而言之,填充床 TES 是装满散装材料的罐 [9]。散装材料用作储热介质。TES 系统最重要的目标是将热能的产生与其使用分离,因为可再生能源可以被邻近的公司使用。加热过程中,储热介质(块状材料)的膨胀会导致储热罐壁上的应力增加。先前的研究结果 [1]、[6]、[7]、[8] 表明,块状材料的接触力增加以及储热罐壁上相关应力的增加会导致损坏(见图 1)。