随着深度钻孔的增长和井文件的复杂性,对生产地层的更完整和有效的开发的要求增加,这增加了各种并发症的风险。当前,基于经过修饰的天然聚合物(自然存在的化合物)和合成聚合物(SPS)的试剂是工业上创建的聚合物化合物的合成聚合物(SPS),被广泛用于防止钻探过程中的新兴并发症。但是,与经过修改的天然聚合物相比,SPS形成了一个高分子重量化合物的家族,这些家族通过进行化学聚合反应完全合成。sps在其设计中提供了很大的灵活性。此外,可以调整它们的大小和化学成分,以提供几乎所有钻孔流体功能目标的特性。可以根据化学成分,反应类型及其对加热的反应进行分类。但是,由于其结构特性,某些SP的成本高,温度和耐盐性水平较差,并且在温度达到130 C时开始降解。这些缺点阻止SP在某些中和深井中使用。因此,本综述介绍了历史发展,特征,制造方法,分类以及SPS在钻孔流体中的应用。详细解释了SPS作为添加剂对钻孔流体的贡献,以详细解释流变学,填充物的产生,携带插条,流体润滑性和粘土/页岩稳定性。还描述了将SP添加到钻孔流体中时所实现的机制,影响和进步。还讨论了SPS在钻探流体中部署及其优势和缺点时遇到的典型挑战。经济问题也影响SPS在钻探流体中的应用。因此,评估了最相关的SP的成本以及合成中使用的单体的成本。SPS在钻孔流体中的环境影响及其制造工艺以及旨在减少这些影响的SP处理方法的进步以及其制造过程。提供了所需的未来研究解决SP财产和性能差距的建议。©2023作者。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/ 4.0/)下的开放访问文章。
摘要:碳水化合物是本质上最丰富的生物分子,特别是在几乎所有植物和真菌中都存在多糖。由于其组成多样性,聚糖分析仍然具有挑战性。与其他生物分子相比,碳水化合物的高通量分析尚未开发。为了解决分析科学中的这一差距,我们开发了一种多重,高通量和定量方法,用于食品中的多糖分析。具体而言,使用非酶促化学消化过程将多糖解散,然后使用高性能液相色谱 - Quadru-飞机飞行时间质谱法(HPLC-QTOF-MS)进行寡糖手指。基于产生的寡糖的丰富性,进行了无标签的相对定量和绝对定量。方法验证包括评估一系列多糖标准和早餐谷物标准参考材料的恢复。9种多糖(淀粉,纤维素,β-葡聚糖,曼南,Galactan,Arabinan,xylan,xyloglucan,chitin)通过足够的准确性(5-25%偏差)和高可重现性成功地定量(2-15%CV)。此外,该方法还用于识别和定量多种食品样品集中的多糖。使用外部校准曲线获得了苹果和洋葱的9种多糖的绝对浓度,其中某些样品在某些样品中观察到了各种差异。■简介本研究中开发的方法将提供互补的多糖级信息,以加深我们对饮食多糖,肠道微生物群落和人类健康的相互作用的理解。
图3蒸发含有不同组合物的无柄液滴后获得的沉积模式。(a)液体的pH值。经许可进行调整。85版权所有2010,美国化学学会。(b)液滴的初始接触角。经许可复制。86版权所有2016,施普林格。(c)含有多物种纳米颗粒上不同底物上的梗液液滴。经许可复制。87版权所有2017,Elsevier。 (d)粒度和浓度的组合。 经许可进行调整。 88版权所有2019,Elsevier。87版权所有2017,Elsevier。(d)粒度和浓度的组合。经许可进行调整。88版权所有2019,Elsevier。88版权所有2019,Elsevier。
摘要:已提出分层TIS 2作为各种电池化学的多功能宿主材料。尽管如此,尚未完全了解其与水性电解质的兼容性。在此,我们报告了可逆的水合过程,以说明相对稀释电解质中TIS 2的电活性和结构性演变,以用于可持续的锂离子电池。溶剂化的水分子在Tis 2层中与Li +阳离子一起插入,形成了一个水合相,具有LI 0.38(H 2 O)2-δTIS2的名义公式单位作为末端。我们明确地通过互补的电化学循环,Operando结构表征和计算模拟来确认两层插入水的存在。这样的过程是快速且可逆的,在1250 mA g -1的电流密度下提供60 mAh g -1放电能力。我们的工作为基于可逆的水共同点的高速水性锂离子电池提供了进一步的设计原理。W
药房提供者必须拥有一份完整的质子泵抑制剂 (PPI) 胶囊、混悬液和非口腔崩解片的预先授权/首选药物清单 (PA/PDL) 表格,该表格由处方人员签名并注明日期,然后才能致电专业传输审批技术-预先授权 (STAT-PA) 系统或在门户网站上、通过传真或邮件提交 PA 请求。处方人员和药房提供者可以致电提供者服务部 800-947-9627 咨询问题。
疫苗中可能含有制造过程中使用的微量新霉素(见第 4.3 节)。有关辅料的完整列表,请参阅第 6.1 节。 3. 剂型 注射用混悬液 不透明白色混悬液 4. 临床特点 4.1 治疗指征 Twinrix 成人版适用于无免疫力的成人和 16 岁以上有感染甲型肝炎病毒和乙型肝炎病毒风险的青少年。 4.2 用法用量 用法用量 对于 16 岁及以上的成人和青少年,建议剂量为 1.0 毫升。 - 基本免疫接种时间表 成人Twinrix疫苗的标准基本免疫接种包括三剂:第一剂在选定的免疫接种日接种,第二剂在第一次免疫接种后1个月接种,第三剂在第一次免疫接种后6个月接种。在特殊情况下,当预计在接种第一剂疫苗后一个月或更长时间进行旅行且没有足够时间遵循标准(0、1、6)疫苗接种时间表时,成人可以采用在第 0、7 和 21 天进行三次连续肌肉注射的时间表。使用此疫苗接种时间表时,建议在第一剂疫苗接种 12 个月后接种第 4 剂疫苗。
1 武汉毒株 hCoV-19/Italy/INMI1-isl/2020 2 在 Vero 细胞(非洲绿猴细胞)上产生 3 吸附在氢氧化铝上(总共 0.5 mg Al 3 +),并总共用 1 mg CpG 1018(胞嘧啶磷酸鸟嘌呤)佐剂。 有关辅料的完整列表,请参阅第 6.1 节。 3. 剂型 注射用混悬液(注射剂) 白色至灰白色混悬液(pH 7.5 ± 0.5) 4. 临床特点 4.1 治疗适应症 COVID-19 疫苗(灭活,佐剂) Valneva 适用于主动免疫,以预防 18 至 50 岁人群中由 SARS-CoV-2 引起的 COVID-19。 该疫苗的使用应符合官方建议。 4.2 剂量和给药方法 剂量 主要系列 18 至 50 岁的个人 COVID-19 疫苗(灭活,佐剂)Valneva 以肌肉注射的方式给药,疗程为 2 剂,每剂 0.5 毫升。第二剂应在第一剂后 28 天注射(参见第 4.4 和 5.1 节)。目前没有关于 COVID-19 疫苗(灭活,佐剂)Valneva 与其他 COVID-19 疫苗互换以完成疫苗接种疗程的数据。已接种第一剂 COVID-19 疫苗(灭活,佐剂)Valneva 的个人应接种
带状疱疹疫苗(重组,佐剂) 1. 药品名称 带状疱疹疫苗(重组,佐剂) 2. 定性和定量组成 重构后,一剂(0.5 毫升)含: 水痘带状疱疹病毒 1 糖蛋白 E 抗原 2,3 50 微克 1 水痘带状疱疹病毒 = VZV 2 佐剂 AS01 B 含有: 植物提取物 Quillaja saponaria Molina,级分 21(QS-21) 50 微克 3-O-去酰基-4'-单磷酰脂质 A 来自明尼苏达沙门氏菌的 Ph. Eur.。 50 微克 3 通过重组 DNA 技术在中国仓鼠卵巢 (CHO) 细胞中产生的糖蛋白 E (gE) 有关完整的辅料列表,请参阅第 6.1 节辅料列表。 3. 药物形式 注射用粉末和混悬液。粉末为白色。混悬液为乳白色、无色至淡褐色液体。 4. 临床详情 4.1 治疗指征 SHINGRIX 适用于预防 50 岁或以上的成年人带状疱疹 (HZ) 和带状疱疹后神经痛 (PHN)(参见第 5.1 节药效学特性)。 4.2 用法用量和给药方法 用法用量 主要疫苗接种计划包括两剂,每剂 0.5 毫升:第一剂,2 个月后第二剂。如果需要灵活调整疫苗接种时间表,则可以在第一剂接种后 2 至 6 个月之间接种第二剂(见 5.1 药效学特性)。
加利福尼亚州桑尼维尔,2024 年 5 月 15 日,Luminus Devices 自豪地推出了一系列突破性的 4 合 1 RGBL(红-绿-蓝-黄绿色)LED,专为需要高输出混色和高显色指数 (CRI) 的舞台和建筑照明系统而设计。4 合 1 RGBL LED 各个发射器之间的间距最小,可提供无与伦比的混色能力,为照明设计师提供广泛的调色板来创造迷人的视觉效果。黄绿色(570 nm 主波长)通道取代了传统 4 合 1 LED 中使用的冷白色 LED,以扩大色彩空间并提高亮度。这些 LED 在最大电流下拥有一流的流明输出,同时保持超过 85 的高 CRI,确保在 3000K 至 8000K 的整个色温范围内提供明亮的照明。所有通道均可驱动高达 3A 和 100% DC,从而实现高流明输出且可靠性不打折扣。
摘要:从飞机的角度来看,从涡扇发动机中提取大量电能的可能性越来越大。未来战斗机的功耗预计将比今天的战斗机高得多。该领域的先前工作集中在高涵道比发动机的功率提取研究上。这促使我们彻底研究低涵道比混流涡扇发动机的性能潜力和局限性。建立了低涵道比混流涡扇发动机模型,并模拟了战斗机任务的关键部分。调查显示了高压涡轮的功率提取如何影响军用发动机在飞行范围内不同任务部分的性能。分析得出的一个重要结论是,如果满足特定的操作条件,可以在高功率设置下从涡扇发动机中提取大量功率,而不会对推力和单位燃料消耗造成太大的损失。如果发动机 (i) 以最大总压力比或接近最大总压力比运行,但 (ii) 远离最大涡轮入口温度极限,则功率提取对发动机推力和推力比燃料消耗的不利影响将受到限制。另一方面,如果发动机已经以最大涡轮入口温度运行,则高压轴的功率提取将导致推力大幅下降。所提出的结果将支持对未来战斗机发动机的战斗机任务优化和循环设计的分析和解释,这些发动机旨在实现大功率提取。这些结果对于飞机设计也很重要,更具体地说,对于确定飞机功率消耗者的最佳能源也很重要。
