摘要。模式混淆不仅在航空心理学中被认为是一个重大的安全隐患。相关文献直观地使用了这一概念,但含义却大相径庭。我们提出了一种在共享控制系统中对人与机器进行建模的严格方法。这使我们能够提出“模式”和“模式混淆”的精确定义。在我们的建模方法中,我们通过明确区分机器和用户对机器的心理模型及其与安全相关的抽象来扩展机器和用户对机器的心理模型之间常用的区别。此外,我们表明,在设计阶段区分三个不同的界面可以降低模式混淆的可能性。结果是根据原因对模式混淆进行了新的分类,从而为共享控制系统提出了许多设计建议,有助于避免模式混淆问题。另一个结果是通过模型检查来检测模式混淆问题的基础。
摘要:基于深度学习的凝视估计方法在跨域环境中性能下降严重,其中一个主要原因是凝视估计模型在估计过程中受到身份、照明等凝视无关因素的混淆。本文提出通过因果干预来解决这一问题,因果干预是一种通过干预混杂因素的分布来减轻混杂因素影响的分析工具。具体而言,我们提出了基于特征分离的因果干预(FSCI)框架,用于可推广的凝视估计。FSCI 框架首先将凝视特征与凝视无关特征分离。为了减轻训练过程中凝视无关因素的影响,FSCI 框架进一步通过使用提出的动态混杂因素库策略对凝视无关特征进行平均来实现因果干预。实验表明,所提出的 FSCI 框架在不同的跨域设置中表现优于 SOTA 注视估计方法,在不接触目标域数据的情况下,跨域准确率分别比基线提高了 36.2% 和比 SOTA 方法提高了 11.5%。
量子复制保护由 Aaronson [ 1 ] 提出,它能够给出无法被有效复制的量子程序描述。尽管经过十多年的研究,但人们知道只有极少数程序能够实现复制保护。作为我们的第一项贡献,我们展示了如何为所有程序实现“最佳”复制保护。我们通过引入量子态不可区分混淆 ( qsiO ) 来实现这一点,这是用于经典程序量子描述的混淆概念。我们表明,将 qsiO 应用于程序可立即实现最佳复制保护。我们的第二项贡献是表明,假设存在单向注入函数,qsiO 是一大类可穿孔程序的具体复制保护 — — 大大扩展了可复制保护程序的类别。我们证明中的一个关键工具是不可克隆加密 (UE) 的新变体,我们称之为耦合不可克隆加密 (cUE)。虽然在标准模型中构建 UE 仍然是一个重要的未解决的问题,但我们能够从单向函数构建 cUE。如果我们另外假设 UE 的存在,那么我们可以进一步扩展 qsiO 是复制保护的可穿孔程序类。最后,我们相对于一个有效的量子预言机构建 qsiO。
量子复制保护由 Aaronson [ Aar09 ] 提出,它可以给出无法被有效复制的量子程序描述。尽管经过十多年的研究,但已知复制保护仅对非常有限的一类程序可用。作为我们的第一项贡献,我们展示了如何为所有程序实现“最佳”复制保护。我们通过引入量子态不可区分混淆 ( qsiO ) 来实现这一点,这是用于经典程序量子描述的混淆概念。我们表明,将 qsiO 应用于程序可立即实现最佳复制保护。我们的第二项贡献是表明,假设存在单向注入函数,qsiO 是一大类可穿孔程序的具体复制保护 — — 大大扩展了可复制保护程序的类别。我们证明中的一个关键工具是不可克隆加密 (UE) 的新变体,我们称之为耦合不可克隆加密 (cUE)。虽然在标准模型中构建 UE 仍然是一个重要的未解决的问题,但我们能够从单向函数构建 cUE。如果我们另外假设 UE 的存在,那么我们可以进一步扩展 qsiO 是复制保护的可穿孔程序类。最后,我们相对于有效的量子预言机构建 qsiO。
以下文章是《跨学科科学评论》的文体实验,反映了作者所从事学科的个人研究议程和轨迹。跨学科研究通常源于个人在好奇心的驱使下偶然做出的特殊经历和决定,以及影响任何人职业生涯的实际偶然性。如果从一个人的视角跨越多个学科,这种反思不可能全面,而且肯定会暴露出知识上的差距和严谨性的缺失,而这些缺陷和缺失本可以在一个学科内得到纠正。提出这种个人议程的目的不是要明确,而是通过拉开学科边缘的松散线索来展开讨论。实验的主要目标是颠覆既定的学科观点,即使同样的问题可以在另一个领域得到更权威的解决。1
量子密码学中一个尚未解决的主要问题是是否有可能混淆任意量子计算。事实上,即使在经典的 Oracle 模型中,人们仍然很难理解量子混淆的可行性,在经典的 Oracle 模型中,人们可以免费混淆任何经典电路。在这项工作中,我们开发了一系列新技术,用它们来构建量子态混淆器,这是 Coladangelo 和 Gunn (arXiv:2311.07794) 最近在追求更好的软件版权保护方案时形式化的一个强大概念。量子态混淆是指将一个量子程序(由一个具有经典描述的量子电路 C 和一个辅助量子态 | ψ ⟩ 组成)编译成一个功能等价的混淆量子程序,该程序尽可能隐藏有关 C 和 | ψ ⟩ 的信息。我们证明了我们的混淆器在应用于任何伪确定性量子程序(即计算(几乎)确定性的经典输入/经典输出功能的程序)时是安全的。我们的安全性证明是关于一个高效的经典预言机的,可以使用经典电路的量子安全不可区分混淆来启发式地实例化它。我们的结果改进了 Bartusek、Kitagawa、Nishimaki 和 Yamakawa (STOC 2023) 的最新工作,他们也展示了如何在经典预言机模型中混淆伪确定性量子电路,但仅限于具有完全经典描述的电路。此外,我们的结果回答了 Coladangelo 和 Gunn 的一个问题,他们提供了一种关于量子预言机的量子态不可区分混淆的构造,但留下了一个具体的现实世界候选者的存在作为一个悬而未决的问题。事实上,我们的量子状态混淆器与 Coladangelo-Gunn 一起为所有多项式时间函数提供了“最佳”复制保护方案的第一个候选实现。我们的技术与之前关于量子混淆的研究有很大不同。我们开发了几种新颖的技术工具,我们期望它们在量子密码学中得到广泛应用。这些工具包括一个可公开验证的线性同态量子认证方案,该方案具有经典可解码的 ZX 测量(我们从陪集状态构建),以及一种将任何量子电路编译成“线性 + 测量”(LM)量子程序的方法:CNOT 操作和部分 ZX 测量的交替序列。
带通滤波。换句话说,第一个块中的所有刺激都标记为 1 类,即使它们反映不同的对象类,第二个块中的所有刺激都标记为 2 类,即使它们反映不同的对象类,依此类推。请注意,所有分类器的分类准确率都很高,没有带通滤波,这表明它们对 EEG 信号和块之间的虚假相关性进行分类,而不是对刺激类别进行分类。即使使用带通滤波,这个准确率也可能过高,情况通常如此。其余表格报告跨块分类。对于受试者 2-6,第一和第二次块运行以相同的顺序呈现刺激。对于受试者 6,第三次块运行以不同的顺序呈现刺激。首先,我们报告第一次块运行的训练和第二次块运行的测试的平均结果,反之亦然,两者都使用
量子密码学中一个尚未解决的主要问题是是否有可能混淆任意量子计算。事实上,即使在经典的 Oracle 模型中,人们也可以自由地混淆任何经典电路,但关于量子混淆的可行性仍有许多需要了解的地方。在这项工作中,我们开发了一系列新技术,用于构建量子态混淆器,这是 Coladangelo 和 Gunn (arXiv:2311.07794) 最近在追求更好的软件版权保护方案时形式化的一个强大概念。量子态混淆是指将量子程序(由具有经典描述的量子电路 𝐶 和辅助量子态 | 𝜓 ⟩ 组成)编译成功能等价的混淆量子程序,该程序尽可能隐藏有关 𝐶 和 | 𝜓 ⟩ 的信息。我们证明了我们的混淆器在应用于任何伪确定性量子程序(即计算(几乎)确定性的经典输入/经典输出功能的程序)时是安全的。我们的安全性证明是关于一个高效的经典预言机的,可以使用量子安全不可区分混淆来启发式地实例化经典电路。我们的结果改进了 Bartusek、Kitagawa、Nishimaki 和 Yamakawa (STOC 2023) 的最新工作,他们还展示了如何在经典预言机模型中混淆伪确定性量子电路,但仅限于具有完全经典描述的电路。此外,我们的结果回答了 Coladangelo 和 Gunn 的一个问题,他们提供了一种关于量子预言机的量子态不可区分混淆的构造,但留下了一个具体的现实世界候选者的存在作为一个悬而未决的问题。事实上,我们的量子状态混淆器与 Coladangelo-Gunn 一起为所有多项式时间函数提供了“最佳”复制保护方案的第一个候选实现。我们的技术与之前关于量子混淆的研究有很大不同。我们开发了几种新颖的技术工具,我们期望它们在量子密码学中得到广泛应用。这些工具包括一个可公开验证的线性同态量子认证方案,该方案具有经典可解码的 ZX 测量(我们从陪集状态构建),以及一种将任何量子电路编译成“线性 + 测量”(LM)量子程序的方法:CNOT 操作和部分 ZX 测量的交替序列。
摘要 - 恶意软件是一种入侵,旨在损害计算机和任何网络连接的设备。由于数字时代的技术进步,恶意软件每天都以不同的形式发展。一些恶意软件包括病毒,特洛伊木马,勒索软件等。混淆的恶意软件是一种恶意软件,无法使用预定的签名模式或通过正常的检测策略来识别。混淆的恶意软件是对安全基础架构的主要威胁,很难检测到。为了自动化混淆的恶意软件检测过程,机器学习起着主要作用。本文旨在开发合适的机器学习模型作为一个合奏框架,以检测混淆的恶意软件。目标本文是在堆叠和提升下找到最有效,性能最高的合奏学习方法。堆叠的合奏学习分类器是通过机器学习模型(如随机森林,决策树,k-neart邻居和天真的贝叶斯)开发的。使用ADABOOST分类器,极端梯度提升分类器和直方图梯度增强算法开发增强集合学习分类器。从加拿大网络安全研究所进行的MalmeManalisy-2022数据集进行研究,其中包括58,598个记录,具有57个功能。使用准确性,精度,召回和F1得分等度量评估集合模型的性能。基于模型之间的比较分析,在堆叠方法中,随机森林和决策树以99.99%获得最高的精度。在增强方法中,通过直方图梯度提升和100%的极端梯度增强模型获得了最高精度。索引术语 - 合奏学习;恶意软件检测;机器学习;混淆的恶意软件;绩效评估
关于此信息 * PMDA 医疗安全信息由药品和医疗器械管理局发布,旨在从促进药品和医疗器械安全使用的角度为医疗保健提供者提供更清晰的信息。这里提供的信息是在专家建议的帮助下,根据日本质量医疗保健委员会收集的医疗事故信息报告案例以及根据《药品和医疗器械质量、功效和安全保障法》收集的不良药物反应和故障报告案例汇编而成的。 * 我们在汇编时已尽力确保此信息的准确性,但不保证其将来的准确性。 * 此信息并非旨在限制医疗保健专业人员的判断力或对他们施加义务和责任,而是为了促进医疗保健专业人员安全使用药品和医疗器械而提供的。通过 PMDA Medi-navi 服务可访问最新的安全信息。 * 此英文版旨在作为参考资料,为用户提供便利。如果日文原文与英文译本有不一致之处,以日文原文为准