抽象的高粱双色是一种重要的全球作物,适合于玉米或米饭更炎热,更干燥的条件下壮成长,具有与独特且分层的土壤微生物组相互作用的深根,在植物健康,生长和碳存储中起着至关重要的作用。对农业土壤的微生物组研究,尤其是生长二色的田地,主要限于表面土壤(<30 cm)。在这里,我们研究了土壤特性,田间位置,深度和高粱类型的生物因子的非生物因素,跨土壤微生物组上的38种基因型。利用16S rRNA基因扩增子测序,我们的分析揭示了微生物组成的显着变化,并且无论基因型或田间如何,双色链球菌内的土壤深度增加。值得注意的是,特定的微生物家族,例如热蛋白孢子科和ABS-6阶内未分类的家族,富含30厘米以上的更深的土壤层。此外,微生物的丰富度和多样性的深度下降,在60-90 cm层达到最低限度,而层的多样性则超过90 cm。这些发现突出了土壤深度在农业土壤微生物组研究中的重要性。
摘要。受实验观察 [1] 的启发,驱动具有弱无序性的 3D 盒子中的非相互作用玻色气体会导致幂律能量增长,E ∝ t η,η = 0.46(2),以及显示动态缩放的压缩指数动量分布,我们对该系统进行了系统的数值和分析研究。薛定谔方程模拟表明,随着无序强度的增加,η ≈ 0.5 到 η ≈ 0.4 的交叉,暗示存在两种不同的动力学状态。我们提出了一个半经典模型,该模型可以捕捉模拟结果,并允许从能量空间随机游动的角度理解动力学,从中可以分析获得从 E ∝ t 1/2 到 E ∝ t 2/5 缩放的交叉。这两个极限对应于随机游动受到弹性无序引起的散射速率或驱动器可以改变系统能量的速率的限制。我们的结果为进一步的实验提供了理论基础。
NCI NPB Agreements for Pre-fractionated Samples • >680,000 fractions so far produced from NCI crude extracts • Pre-fractionated library of 500,000 natural product samples publicly released • >9,000,000 wells shipped to screening centers so far • Technology transfer of methods and automated systems to groups worldwide • >70 MTAs signed with industry, government, and academic screening centers
建议从中子陷阱中超冷的中子的异常泄漏可能与其中的多核子形成有关。表明,即使在没有二氧化酮作为游离稳定颗粒的情况下,温度t小于10 -3 k的超低中子的气体也应形成培养基bose冷凝物。考虑了中子星中葡萄球子的稳定性的假设而产生的后果。讨论了在其中和沉重的核中形成bose冷凝物的条件。
微结构或纳米结构会引起衍射、干涉和散射。[3] 以这种方式产生的结构色通常与角度有关(彩虹色),与光吸收产生的颜色相比,结构色更鲜艳、可调且稳定。[4] 到目前为止,已有多种光子结构被用于产生结构色并取代传统的色素沉着。这些包括可调高折射率光子玻璃、微米级球形胶体组件和衍射光栅结构。[5,6] 虽然仿生光子结构已被用于创造高度饱和的结构色,但它们制造困难且成本高,不适合大规模生产。此外,整个可见光谱范围内对新的仿生结构色的需求尚未得到满足。因此,更好地理解结构着色的潜在机制无疑将改善颜色特性和寿命。虽然自然界中存在大量结构色的例子,但由于蝴蝶翅膀的光子纳米结构颜色鲜艳,因此人们对其的研究兴趣颇多。[7,8] 例如,Vigneron 等人发现,Pierella luna(月神蝴蝶)翅膀鳞片产生的彩虹色效应是由整个鳞片的宏观变形引起的,当翅膀被白光照射时,就像衍射光栅一样分解
摘要:结构颜色是一种引人入胜的光学现象,它是由复杂的光 - 物质相互作用引起的。来自天然聚合物的生物结构颜色在仿生设计和可持续结构中是无价的。在这里,我们报告了一种可再生,丰富且可生物降解的有机凝胶,该有机凝胶会产生具有生动结构颜色的稳定胆固醇液晶结构。我们使用68 wt%羟丙基纤维素(HPC)基质构建色凝胶,结合了不同的聚乙烯乙二醇(PEG)宾客分子。PEG包含具有定制极性的奇特端基团,可以通过PEG和HPC链之间的静电排斥在HPC螺旋主链上精确定位。这可以保留HPC的手性列相,而不会受到干扰。我们证明了钉子的极性会调谐HPC凝胶的反射色。此外,具有可变极性的凝胶对温度,压力和拉伸高度敏感,从而导致快速,连续和可逆的颜色变化。这些特殊的动态特征建立了手性列凝胶,作为跨显示,可穿戴设备,柔性电子,健康监测和多功能传感器的下一代应用的出色候选者。关键字:手性列结构,羟丙基纤维素,螺距,聚乙烯乙二醇,结构颜色
使用纳米悬浮液可以提高砖粉药物和亲脂性物质的溶解度。它们的特征是无载体、纳米尺寸、100% 药物颗粒,粒径小于 1 纳米,用最少量的合适表面活性剂、聚合物或它们的组合制造而成。(7)与其他纳米悬浮液制造程序相比,湿介质研磨是一种更好的选择,因为它易于操作、价格低廉、高度可重复、高效、不含有机溶剂,并且易于扩大规模。(8)此外,在生产纳米悬浮液时,实现这些优势是当务之急。(9)另一方面,关键问题是研磨珠腐蚀可能带来污染。此外,由于研磨介质负载过重导致研磨设备重量过大,控制批量大小可能会变得复杂,而研磨时间延长也可能导致其他问题。 (10)对于湿式研磨,最重要的工艺变量是温度、研磨时间、研磨速度、介质体积和研磨尺寸。稳定剂类型、粘度、浓度和药物浓度是影响最终产品质量的典型配方特征。(11)工艺优化变得越来越重要,因为药物配方的开发通常侧重于生产出最好的最终药物,同时使用更少的能源并提高生产能力。(12)
摘要:我们结合线性粘弹性测量和建模来探索相同分子量的环状和线性聚合物共混物在环组分体积分数较低(0.3 或更低)范围内的动力学。由于线性链的运动,应力松弛模量受到环和线性组分的约束释放 (CR) 的影响。我们开发了一种基于 CR 的环-线性共混物模型,该模型可以预测环组分分数较低范围内的应力松弛函数,与实验结果高度一致。被线性链缠结所困的环只能通过线性链诱导的 CR 来松弛,而且环的松弛速度比线性链慢得多。预计在环重叠体积分数 ϕ R * 下,共混物的相对粘度 η ( ϕ R * )/ η L 相对于线性熔体粘度 η L 的增加与环分子量 M w,R 的平方根成比例增加。我们的实验结果清楚地表明,通过添加少量环状聚合物,可以同时提高线性聚合物熔体的粘度和结构松弛时间。这些结果不仅为 CR 工艺的物理原理提供了根本性的见解,还提出了通过添加环状聚合物来微调线性聚合物流动性能的方法。
This course aims at introducing the basic concepts and techniques in carrying out chemical analysis by using various modern spectroscopic and chromatographic instruments.Students will learn how to use modern instruments to determine the amounts of substances present in a mixture down to part per million levels (ppm), and identify the structure of a compound.Techniques such as UV-visible spectroscopy, infrared spectroscopy, mass spectrometry, nuclear magnetic resonance spectroscopy, gas chromatography and high performance liquid chromatography will be covered.This course will also discuss some common standard practices of collecting and preparing samples for laboratory testing, the accreditation system in testing laboratories.This course is conducted in the format of lecture.本课程旨在介绍化学分析中所用到的现代光谱和色谱仪器的基本概念和技术。学生将学习使用该 等仪器来分析浓度水平低至百万分之一的物质,并确定化合物的结构。课程内容包括紫外 − 可见光 谱法、红外线光谱法、质谱分析法、核磁共振、气相色谱法及高效能液相色谱法的操作技巧,以 及化验工作中的收集及制备样本的常用标准技巧和香港化验室所实行的认可系统。课程以讲课形 式进行。 Medium of Instruction:
KPR 集团成立于 1984 年,凭借良好的业绩记录,已成为增长最快的企业集团之一,业务成功从纺织扩展到糖、乙醇、可再生能源、教育和汽车。KPR 始终坚持“质量”的准则,无论其生产什么或提供服务,KPR 都生产一系列令人兴奋的纺织品,例如成衣针织服装;面料;紧密纱、混色纱、普梳纱、涤纶、精梳纱和红标纱。该集团采用最新技术和工艺,为全球 60 多个国家的客户提供卓越品质的产品。为 30,000 多名员工(90% 为女性)提供有意义的职业机会。KPR 创造更好的产品,同时打造更安全、更高效、更环保的工作场所。KPR 采取全面的可持续发展方针,从可再生能源中获取电力,共同努力保护环境;通过增强妇女权能和促进社区发展,KPR 始终坚定不移地追求卓越运营、促进社会进步,并致力于重新定义印度服装行业的标准。