由液态金属(LM)液滴组成的软,多功能复合材料的材料挤出(MEX)可以为从软机器人到可拉伸电子设备的一系列应用提供高度量身定制的性能。但是,了解LM墨水流变性和打印过程参数如何在MEX处理过程中重新配置LM液滴形状,以实现对属性和功能的原位控制。在此,确定这些复合材料的MEX期间哪个控制LM微结构,确定了哪些控制LM微结构。评估这些参数的相互作用和相互依赖性,并通过系统地调整每个单独的参数,将几乎球形的LM液滴转化为高度伸长的椭圆形形状,平均纵横比为12.4。的材料和过程关系是为LM墨水建立的,该墨水表明,在MEX期间,应实现从球形到椭圆形形状的LM微结构编程的墨水粘度阈值。此外,发现LM液滴上的薄氧化物层在液滴形状的重新配置和保留中起着独特而关键的作用。最后,提出了基于材料和过程参数的两个定量设计图,以指导MEX添加剂制造策略,用于调整LM-Polymer Inks中的液滴体系结构。这项研究所获得的见解实现了材料和制造的知情设计,以控制新兴的多功能软复合材料的微观结构。
Exaddon的Ceres µAM系统通过局部电沉积打印高电导金属对象。该系统将直接在预预生使的芯片和Micropcb上打印独立的结构,例如支柱,针和线圈。打印在室温下发生,不需要后处理,并且与IC和PCB制造步骤兼容。分辨率为<1 µm,结构可以以微米精度位于印刷表面上。可能的纵横比为100:1。应用包括半导体探针测试,神经接口/BCIS和MMWAVE/5G/THZ组件。
摘要:航空航天行业中金属添加剂制造(AM)的主要优点是整合;减少交货时间,以强大的强度对(s:w)比很容易构建复杂的结构;生产按需零件,库存降低,不确定性和供应链成本的生产。Ti6al4v和镍基合金是航空航天零件的常用材料。基于地面的AM为航空航天取得了巨大进步。AM有可能开发用于通用航空,飞机,导弹和较少巨大卫星系统的零件。这项研究介绍了AM优势,AM的技术,AM的材料和应用以及航空航天行业的研究进度;涉及AM的最新技术及其航空航天的趋势;并强调了它的挑战和未来的研究。关键字:添加剂制造(AM),航空航天,人工智能(AI),直接能量沉积(DED),粉末床融合(PBF),缺陷,残余压力,供应链简介
在Naoonal Aeronauocs和Space Administration(NASA)电气化的Aircrai开发计划下,亚音速单AI发动机(Susan)Electrofan概念设计项目要求抽象的高容量,高性能和安全的Bahery技术。这些Bahery技术,包括用于杂交/电推进和原发性Baheries的次级(即可充电)Baheries(即不可充电或一次性使用)是Susan概念设计中重要而重要的组成部分。本文集中于铝(AL)空气Bahery,这被认为是实现Susan Project主要Baheries能源目标的最有前途的候选人。然而,空气疗程面临挑战,包括用氢(h 2)煤气(h 2)和缓慢的氧气氧气重新捕获(ORR)在空气阴极中的铝腐蚀。在本文中,对控制铝自腐蚀/H 2隔气抑制以及对ORR改进的空气阴极设计的研究的初步结果是对铝制自我腐蚀的,并进行了讨论。
路博润先进材料有限公司 (“路博润”) 希望您发现所提供的信息有用,但请注意,本材料(包括任何原型配方)仅供参考,您应自行负责评估信息的适当使用。在适用法律允许的最大范围内,路博润不作任何陈述、保证或保证(无论是明示、暗示、法定或其他形式),包括任何关于适销性或特定用途适用性的暗示保证,或关于任何信息的完整性、准确性或及时性的暗示保证。路博润不保证本文引用的材料与其他物质、在任何方法、条件或工艺、任何设备或在非实验室环境中结合使用时的性能。在将含有这些材料的任何产品投入商业化之前,您应彻底测试该产品,包括产品的包装方式,以确定其性能、功效和安全性。您对您生产的任何产品的性能、功效和安全性负全部责任。路博润不承担任何责任,您应承担任何材料使用或处理的所有风险和责任。任何索赔可能并非在所有司法管辖区都获得批准。任何提出与这些产品相关的索赔的实体都有责任遵守当地法律法规。本文中包含的任何内容均不应被视为未经专利所有者许可而实施任何专利发明的许可、建议或诱导,并且您有责任确定是否存在与所提供信息相关的任何组件或组件组合的专利侵权问题。您承认并同意您自行承担使用本文提供的信息的风险。如果您对路博润提供的信息不满意,您的唯一补救措施是不使用这些信息。www.lubrizol.com/coatings 商标归路博润公司或其附属公司所有。©路博润公司 2024,保留所有权利。24-0003490
AM内有不同的增材制造过程类别,这些过程类别由ISO/ASTM 52900:2021 Standard(ISO/ASTM,2021)进行了分类。在图3中可以看到不同的过程类别。在这些过程类别中,存在不同原料和能源的组合。例如,在定向的能量沉积过程类别中,通过将激光作为能源和电线组合为原料,然后将AM过程称为激光金属用线(LMDW),或者原料为电线,并且能量源是电弧,则该过程称为电线,然后称为电线和弧形增材制造(WAAM)。所有AM过程类别中的共同点是计算机辅助设计(CAD)模型数据的输入,该数据将其切成多个层,然后以添加的方式通过零件制造来指导零件的图层。
摘要:在过去的20年中,具有内部晶格和封闭外壳的内部晶格的轻质结构,由于其刚度的提高,屈曲强度,多功能设计和能量吸收,因此引起了很多关注。添加剂制造的典型几何自由允许为航空应用设计更轻,更硬和更有效的结构。激光粉床融合技术,特别是可以制造具有复杂几何形状的金属零件,从而改变了机械组件的设计和制造方式。这项研究提出了一种重新设计原始卫星结构的方法,该卫星结构由墙壁和肋骨组成,并具有封闭的晶格设计。提出的新结构必须遵守机械性能,尺寸准确性和重量的限制要求。最具挑战性的是原始卫星根据传统制造而设计的第一个频率请求。为了克服这个问题,开发了特定的框架,以局部增厚晶格的临界区域。使用新设计允许符合动态行为并获得维护机械性能的重量。这种主要结构的添加剂制造的制造证明了这项新技术可以满足航空航天局中具有挑战性的请求的可行性。