3M 产品或退还购买价格。贸易惯例。如果 3M 产品不符合本保证,则唯一的专属补救措施是,由 3M 选择更换非侵权保证或任何因交易过程、习惯或交易而产生的默示保证或条件,任何适销性或针对特定用途的适用性的默示保证或条件,或 3M 发货时的任何默示保证或条件。3M 不做任何其他明示或暗示的保证或条件,包括但不限于适用产品说明书或包装插页中所述的保证或条件,3M 保证每件 3M 产品均符合适用的 3M 产品规格,并确保用户对 3M 产品的使用不会侵犯任何第三方的知识产权。除非另有专门针对特定目的并适合用户的应用方法的保证。用户全权负责评估第三方知识产权和 3M 产品在特定应用中的性能。用户全权负责评估 3M 产品并确定其是否适合保修、有限补救措施和免责声明:许多超出 3M 控制范围且仅在用户知识和控制范围内的因素可能会影响使用
摘要:在大规模的定向能量沉积加成制造(DEDAM)为海上应用中使用镍铝青铜(NAB)合金的兴趣增加了,但一个挑战在于组成失真,这是由于制造过程中产生的残余应力而产生的。本文介绍了NAB激光热线(LHW)DEDAM的热机械模拟的开发和评估,以预测部分变形。在开放文献和公共数据库中,使用了NAB C95800的温度依赖性特性的缺乏,使用用各种DEDAM过程制造的测试样品测量了NAB C95800的温度依赖性材料和机械性能。Autodesk的NetFabb本地仿真软件是一种基于商业的元素AM求解器,但已使用其热源模型进行了修改,以适应LHW Dedam的振荡激光路径和预热的线原料提供的额外能量输入。热机械模拟。与使用温度依赖性性质的恒定特性在热机械分析中的使用导致明显不同的预测失真,甚至有时甚至可以预测沿相反方向的底物位移。
摘要添加剂制造业(AM)的最新进展引起了重大的工业兴趣。最初,AM主要与制造原型相关联,但是AM的进步与可用材料的扩展范围(尤其是用于生产金属零件)扩大的范围已经扩大了应用区域,现在该技术也可以用于制造功能零件。尤其是,AM技术可以用传统的制造工艺创建复杂和拓扑优化的几何形状。然而,在大多数情况下,使用独立的AM技术,无法实现紧密的几何公差以及航空航天,生物医学和汽车行业的严格表面完整性要求。因此,AM零件需要大量的后处理,以确保满足其表面和尺寸要求以及它们各自的机械性能。在这种情况下,不足为奇的是,AM与后处理技术的整合到单个和多设置的处理解决方案中,通常称为Hybrid AM,已成为行业非常有吸引力的命题,同时吸引了重大的R&D兴趣。本文回顾了与混合AM解决方案相关的当前研究和技术进步。特别的重点是将基于激光的AM加工粉末功能的混合AM解决方案与必要的后进程技术,用于生产具有必要准确性,表面完整性和材料特性的金属零件。将基于激光AM与后处理技术集成的市售混合动力AM系统以及其关键应用领域还进行了审查。最后,讨论了扩大混合AM解决方案的工业使用方面的主要挑战和开放问题。
作者:P。Martins,V。Correia和S. Lanceros-Mendez,电子邮件:pmartins@fisica.uminho.pt和senentxu.lanceros@bcmaterials.net and Minho和Bcmaterials
添加剂制造(AM)为具有内部功能的复杂组件带来了重要的设计和制造机会,例如以前无法使用液体火箭发动机推力室。该技术可节省大量成本和计划减少,除了通过减轻重量和增加利润来优化新的绩效。特定于再生冷却的燃烧室和液体火箭发动机的喷嘴,添加剂制造具有形成复杂的内部冷却液通道和通道的关闭功能,可以包含具有单个操作的高压液体推进剂。使用激光粉床融合(L-PBF),大部分添加剂制造开发都集中在整体合金上,这些合金不允许对结构进行完全优化。国家航空航天局(NASA)完成了AM双金属L-PBF GRCOP-84铜合金燃烧室,具有AM Electron Beam Freeform Inconel 625结构夹克在低成本上级推进(LCUSP)项目下。正在开发一个名为“快速分析和制造推进技术”(RAMPT)的后续项目,以进一步扩展大型多合金推力室,同时将综合覆盖技术与大量储蓄机会相对。除了这些主要的制造开发外,分析建模工作还补充了过程开发,以模拟AM过程以减少构建失败和扭曲。RAMPT项目还在GRCOP-42的L-PBF之外,还为上述各种制造工艺的供应链介绍了供应链。RAMPT项目具有三个主要目标:1)推进吹粉的导向能量沉积(DED)以制造整体通道大型喷嘴,2)开发复合覆盖技术,以减少重量并为推力室内组件提供结构性能力,3)开发Bimetallic和多金属添加性添加性添加性产物和轴向物质的材料,以优化材料。本文将概述RAMPT项目,流程开发和硬件进展,迄今为止,材料和热火测试结果以及计划的未来发展。
抽象添加剂制造(AM)或3D打印是一种制造技术,其中连续的材料分层以生产零件。AM订购的设计自由是太空行业的理想选择,其中部分生产量很低且高度定制。本文的目的是在所有领域(从推进到电子产品到印刷栖息地的空间添加剂制造(AMF)领域)进行审查,并确定研究中的差距和方向。在本文中,我们通过将其分为两个领域来研究AMFS研究:空间和基于地面。使用Polyers在国际空间站上建立了基于空间的AMF,我们还讨论了空间内AM的未来,该主题与更通用的空间内生产密切相关。基于印刷材料的基于地面的研究分为三类:金属,聚商和其他。最后一个类别包括Regolith,水泥和陶瓷。本文通过使用论文,演示文稿和新闻文章的组合将尽可能多的研究信息汇总在一起来探讨AMF。我们预计本文将使读者能够了解AMFS研究的当前状态,并将有助于该领域作为参考和研究指南。
增材制造 (AM),又称 3D 打印,是一种与铸造和金属加工等传统制造技术相比相对较新的金属材料制造方法。增材制造产品是根据 CAD 绘制的 3D 模型逐层堆叠金属材料而制成的。该技术在生产部件的尺寸上具有极大的自由度,可以制造形状复杂的部件,而这些部件很难或有时无法通过其他方式实现。这有多种好处。增材制造部件的总重量和制造工艺时间可以大大节省。原本由多个较小部件连接而成的部件可以制成一个整体,从而提高生产率并消除连接问题。由于上述原因,过去几十年来,增材制造在许多工业和军事应用领域都很受欢迎 [1,2,3]。然而,直到最近,这项技术才开始引起海洋和造船业的关注。在海事领域利用增材制造优势的努力已经
铝 6061-RAM2 是一种为增材制造 (AM) 工艺开发的高强度铝原料。这种合金利用了反应增材制造 (RAM) 技术。RAM 铝合金被开发为可焊接(因此可打印),同时强度性能等于或超过高强度锻造铝合金。NASA 和行业合作伙伴开发了激光粉末定向能量沉积 (LP-DED) 增材制造 Al6061-RAM2,用于航空航天应用。工作包括建立构建参数、表征合金、制造组件以及完成复杂内部通道冷却喷嘴的热火测试。这些工作是为了满足对使用高性能轻质材料的大型部件日益增长的需求。两个火箭发动机喷嘴是使用包括整体冷却通道的 LP-DED Al6061-RAM2 制造的。Al6061-RAM2 已完成工艺开发并确定了初始性能。本文概述了 LP-DED 工艺开发、材料特性和性能、组件制造、补充开发和热火测试。本文提供了使用液氧 (LOX)/液氢 (LH2) 和液氧/甲烷 (LCH4) 的着陆器级 31 kN (7,000 lb f ) 推力发动机的热火测试结果。
益生菌,实时和非致病微生物,因其在宿主中的健康益处的多样化,包括改善的肠道健康和均衡的肠道微生物组(Hu等,2017)。多晶体益生菌(如市售蛋白质),由于乳酸细菌,酵母和真菌的结合而具有比单晶型选项的优势(Firouzbakhsh等,2011; Hossain et al。,2022)。这些微生物对于消化,营养摄取,免疫力和抗病性至关重要(Diwan等,2022)。益生菌增强了消化酶功效,从而改善了鱼类的养分吸收和消化。它们还可以增加肠绒毛的高度,从而最大程度地提高养分吸收的表面积(Tong等,2023)。此外,益生菌上调了抗氧化剂酶,增强了人体对压力的防御系统(Gobi等,2018)。由于agastric Fish Cirrhinus Mrigala经历了其小肠中的粮食保留,因此益生菌可能特别有益。通过对有害微生物排毒并促进消化酶,益生菌可以显着改善营养吸收(Ntakirutimana等,2023)。因此,本研究的目的是开发一种新的水产养殖饲料配方,其中包含不同水平的益生菌,并评估其对Mrigala C. mrigala中的生长,消化率,抗氧化剂活性和血液参数的影响。