背景:目前,清醒脑外科手术期间的语言映射是一种标准程序。然而,对于对社交互动很重要的其他认知功能,如视觉空间认知和非语言,包括面部表情和眼神注视,很少进行映射。这种遗漏的主要原因是缺乏与手术室的限制性环境和清醒脑外科手术程序完全兼容的任务。目的:本研究旨在评估配备眼动追踪设备的虚拟现实耳机的可行性和安全性,该耳机能够为接受清醒开颅手术的患者提供身临其境的视觉空间和社交虚拟现实 (VR) 体验。方法:我们招募了 15 名语言和/或运动区域附近有脑肿瘤的患者。语言映射是通过命名任务 DO 80 进行的,该任务在计算机平板电脑上呈现,然后通过 VRH 以 2D 和 3D 形式呈现。患者还沉浸在视觉空间和社交 VR 体验中。结果:所有患者均未出现 VR 晕动症,但有 2 名患者在术中出现局灶性癫痫发作,但没有后果;没有理由将这些癫痫发作归因于虚拟现实耳机的使用。患者能够执行 VR 任务。眼动追踪功能正常,使医疗团队能够直接分析患者的注意力和对虚拟现实耳机视野的探索。结论:我们发现在清醒脑部手术期间让患者沉浸在交互式虚拟环境中是可能的,也是安全的,为新的基于 VR 的脑部映射程序铺平了道路。试验注册:ClinicalTrials.gov NCT03010943;https://clinicaltrials.gov/ct2/show/NCT03010943。
一小部分易受焦虑影响的个体在一次暴露后就会产生危及生命的恐惧,这种恐惧可能会持续一生。然而,我们既不知道整个大脑对先天急性恐惧的反应,也不知道大脑活动如何随时间演变。持续的神经元活动可能是持续恐惧反应发展的一个因素。我们结合了两种实验方案来激发急性恐惧,从而导致长期恐惧:捕食者应激 (PS),一种在啮齿动物中诱发恐惧的自然方法;以及血清素转运蛋白敲除小鼠 (SERT-KO),该小鼠对 PS 的反应是持续的防御行为。在野生型 (WT) 和 SERT-KO 小鼠中,在 PS 之前、期间以及 PS 之后的短时间和长时间内监测行为。两种基因型都对 PS 做出了防御行为反应。SERT-KO 保持防御行为 23 天,而 WT 小鼠在 9 天内恢复到基线探索行为。因此,在 PS 后 9 天,WT 和 SERT-KO 之间的神经活动差异确定了小鼠持续防御行为的神经相关性。我们采用了纵向锰增强磁共振成像 (MEMRI) 来识别与不同行为相关的全脑神经活动。Mn 2 + 在清醒、行为正常的小鼠中积累,并进行回顾性成像。纵向跟踪相同的两组小鼠,WT 和 SERT-KO,可以通过统计参数映射 (SPM) 对全脑活动进行无偏定量比较。在 WT 的自然行为过程中,仅检测到低水平的活动诱导 Mn 2 + 积累,而在 WT 和 SERT-KO 中,PS 之后立即出现了更多的积累,并在 9 天时演变为一种新的活动模式(p < 0.0001,未校正,T = 5.4)。不同基因型的积累模式不同,SERT-KO 涉及的大脑区域更多,区域内体积也更大。使用我们基于活体小鼠锰增强 MR 图像的 InVivo Atlas 进行的新计算分割分析揭示了每个节段内显著增强体素体积的动态变化,这些体素在 87 个分割区域中的 45 个中因基因型而异。在 PS 后第 9 天,两种基因型的纹状体和腹侧苍白球都活跃,但在 SERT-KO 中更为活跃。SERT-KO 还显示恐惧后和第 9 天之间八个节段的 Mn 2+ 积累量持续或增加,而 WT 中的活动减少或沉默。在成像会话结束时固定的同一只小鼠的大脑的 C-fos 染色(另一种神经活动标记)证实 MEMRI 检测到了活跃的神经元。12 个感兴趣区域 (ROI) 的强度测量支持 SPM 结果。通过 SPM 和 ROI 测量进行的组间比较确定了不同时间点和基因型的特定区域。我们报告了单次急性恐惧暴露后的全脑活动,并且首次报告了在易受持续恐惧影响的个体中,其活动模式会随着时间的推移而演变。我们的研究结果显示,SERT-KO 中多个区域的神经活动发生了动态变化,并且各部分之间的活动平衡被打乱。因此,纵向 MEMRI 是一种强有力的方法,可以发现大脑范围内的活动如何从自然状态演变而来,无论是在经历之后还是在疾病过程中。
I. 引言清醒开颅手术是神经外科中一种强大而灵活的手术,可减少医源性神经损伤。清醒开颅手术最先用于癫痫的外科治疗,随后被用于治疗脑幕上肿瘤、血管病变、脑 1、2、3 关键区域附近的深部脑刺激患者。在清醒开颅手术期间,患者的积极参与对于外科医生的术中决策是必不可少的。清醒开颅手术具有降低术后发病率、促进早日出院的独特优势。神经外科医生及其团队的主要目标是通过减少患者的心理生理痛苦和发病率来确保手术安全有效。我们注意到,在术中播放患者最喜欢的大片《巴霍巴利王》可以有效地分散患者的注意力。我们报告了一例罕见病例,该病例的海绵状瘤位于左侧感觉皮层与运动区相邻处,表现为复发性癫痫。
在大多数物种中,生存依赖于下丘脑对内分泌轴的控制,这些内分泌轴调节生殖、生长和新陈代谢等关键功能。几十年来,下丘脑-垂体轴的复杂性和难以接近性阻碍了研究人员阐明内分泌性下丘脑神经元活动与垂体激素分泌之间的关系。事实上,对内分泌功能中枢控制的研究在很大程度上是由“传统”技术主导的,这些技术包括研究体外或离体分离的细胞类型,而不考虑大脑、垂体和外周水平的调节机制的复杂性。如今,通过利用现代神经元转染和成像技术,可以在原位、实时和有意识的动物中研究下丘脑神经元活动。钙活动的深层脑成像可以通过长期植入的梯度折射率透镜进行,它提供了一个“进入大脑的窗口”,可以在单细胞分辨率下对多个神经元进行成像。通过这篇评论,我们旨在强调深层脑成像技术,这些技术能够研究清醒动物的神经内分泌神经元,同时保持大脑、垂体和周围腺体之间调节环路的完整性。此外,为了帮助研究人员设置这些技术,我们讨论了所需的设备,并提供了进行这些深层脑成像研究的实用分步指南。
许多实验神经科学实验室正在进行一项研究,即对清醒行为的动物进行长期/纵向光学成像和神经记录。在许多情况下,动物需要在数据采集过程中固定头部。固定系统通常需要一个永久固定在动物头骨上的头柱,以提供机械稳定性。纳米制造技术的最新进展促成了微电极阵列的发展,这些阵列大部分或完全透明(例如 [1,2])。这些阵列与神经光子学方法相结合,可以同时采集多模态数据集。在这里,我们提出了一种用于光学成像和电生理学 (OIE) 的模块化头柱系统,允许长期安装微电极阵列。我们的设计需要满足以下标准:(1) 长期植入微阵列,使用寿命长达 6 个月。(2) 可以使用不同尺寸的显微镜物镜。(3) 头柱和头柱支架可畅通无阻地接触胡须垫以进行感官刺激。 (4)该设计可适应不同的大脑区域和更大的曝光。