b'与 ED 一样,对于一般的混合态,EC 也很难计算,而且只在极少数特殊情况下才为人所知。但是,对于纯态,例如前面讨论过的 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 状态,EC = \xe2\x88\x92 Tr \xcf\x81 A log 2 ( \xcf\x81 A ) ,等于 ED 。实现纯态稀释过程的最佳方式是利用两种技术:(i)量子隐形传态,我们在一开始就介绍过,它简单地说是一个双方共享的贝尔态可以用来确定地转移一个未知的量子比特态,以及(ii)量子数据压缩[12],它的基本意思是,一个由 n 个量子比特组成的大消息,每个量子比特平均由一个密度矩阵 \xcf\x81 A 描述,可以压缩成可能更少的 k = nS ( \xcf\x81 A ) \xe2\x89\xa4 n 个量子比特;而且只要 n 足够大,就可以忠实地恢复整个消息。我们稍后会讨论量子数据压缩。纯态在渐近极限下的可逆性。有了这两个工具,爱丽丝可以先准备 n 份 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 (总共 2 n 个量子比特)在本地压缩 n 个量子比特为 k 个量子比特,然后 \xe2\x80\x9csend\xe2\x80\x9d 发送给 Bob,并使用共享的 k 个贝尔态将压缩的 k 个量子比特传送给 Bob。然后 Bob 将 k 个量子比特解压缩回未压缩的 n 个量子比特,这些量子比特属于纠缠态 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 的 n 个副本中的一半。因此,Alice 和 Bob 建立了 n 对 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 。这描述了纯态稀释过程的最佳程序。蒸馏的纠缠和纠缠成本被渐近地定义,即两个过程都涉及无限数量的初始状态的副本。对于纯态,EC = ED [7],这意味着这两个过程是渐近可逆的。但对于混合态,这两个量都很难计算。尽管如此,预计 EC ( \xcf\x81 ) \xe2\x89\xa5 ED ( \xcf\x81 ),即蒸馏出的纠缠不能比投入的多。形成的纠缠\xe2\x80\x94 是一个平均量 。然而,正如我们现在所解释的,有一个 EC 的修改,通过对纯态的 EC 取平均值获得,它被称为形成纠缠 EF [11, 13]。任何混合态 \xcf\x81 都可以分解为纯态混合 { pi , | \xcf\x88 i \xe2\x9f\xa9\xe2\x9f\xa8 \xcf\x88 i |} ,尽管分解远非唯一。以这种方式通过混合纯态构建混合态平均需要花费 P'
接下来,通过与(2)相似的计算来检查平均曲率,相对于正常指向附近的共包构边界,通过与(2)的计算进行检查,将证明简化为与球形拓扑处的单个共形边界的情况。We can therefore cut away an asymptotic end of M by introducing a new boundary component { Ω= ϵ } , with ϵ sufficient small so that this new boundary component satisfies, say, H > 0 with respect to the outward normal (thus H < 0 < n − 1 with respect to the inward normal).此边界组件将成为新的,截断,多种多样的边界的一部分,但仍以m表示。
我们考虑具有较大n限制和半经典重力二重描述的6D超符号的理论(SCFTS)。使用6D SCFT的Quiver样结构,我们研究了一个免受大型操作员混合的操作员的子部门。这些操作员以一维自旋链中的自由度为特征,相关状态通常是高度纠缠的。这在强耦合的量子场理论中提供了量子样状态的具体实现。重新归一化组流量转化为这些一维自旋链的特定变形。我们还提出了一种猜想的自旋链哈密顿量,该链链条跟踪这些状态的演变是重新归一化组流的函数,并在这种情况下研究了量子操作。对没有广告双重的理论的类似考虑,例如从t 2上的部分张量分支理论获得的6D小字符串理论和4D SCFT。
b'摘要。我们提出了用于解决随机子集和实例的新型经典和量子算法。首先,我们改进了 Becker-Coron-Joux 算法 (EUROCRYPT 2011),将 e O 2 0 . 291 n 降低到 e O 2 0 . 283 n,使用更一般的表示,其值在 {\xe2\x88\x92 1 , 0 , 1 , 2 } 中。接下来,我们从几个方向改进了该问题的量子算法的最新技术。通过结合 Howgrave-Graham-Joux 算法 (EUROCRYPT 2010) 和量子搜索,我们设计了一种渐近运行时间为 e O 2 0 的算法。 236 n ,低于 Bernstein、Je\xef\xac\x80ery、Lange 和 Meurer (PQCRYPTO 2013) 提出的基于相同经典算法的量子行走成本。该算法的优势在于使用带有量子随机存取的经典存储器,而之前已知的算法使用量子行走框架,需要带有量子随机存取的量子存储器。我们还提出了用于子集和的新量子行走,其表现优于 Helm 和 May (TQC 2018) 给出的先前最佳时间复杂度 e O 2 0 . 226 n 。我们结合新技术达到时间 e O 2 0 . 216 n 。这个时间取决于 Helm 和 May 形式化的量子行走更新启发式方法,这也是之前的算法所必需的。我们展示了如何部分克服这种启发式方法,并获得了一个量子时间为 e O 2 0 的算法。 218 n 只需要标准的经典子集和启发式方法。'
b“极值图论的一个核心问题是确定给定图 H 在 \xef\xac\x81x 大小的图中诱导副本的最大数量。这个问题最早由 Pippenger 和 Golumbic [13] 研究,近年来已成为广泛研究的主题 [2, 3, 7, 8, 11, 18]。本文重点关注有向图的类似问题。准确地说,设 H 是有向图。有向图 G 中 H 的诱导密度,表示为 i ( H, G ),是 G 中 H 的诱导副本数量除以 | V ( G ) | | V ( H ) | 。对于整数 n ,设 i ( H, n ) 为所有 n 顶点有向图 G 中 i ( H, G ) 的最大值。H 的诱导性定义为为 i ( H ) = lim n \xe2\x86\x92\xe2\x88\x9e i ( H, n )。当 i ( H, n ) 对于 n \xe2\x89\xa5 2 递减时,此极限存在。只有极少数有向图的可诱导性是已知的。一类重要的例子是有向星号。对于非负整数 k 和 \xe2\x84\x93 ,让有向星号 S k,\xe2\x84\x93 为通过对具有 k + \xe2\x84\x93 叶子的星号的边进行有向图,使得中心具有出度 k 和入度 \xe2\x84\x93 。有向星形是所有边都具有相同方向的定向星形,即星形 S k,\xe2\x84\x93 ,使得 k = 0 或 \xe2\x84\x93 = 0。S 2 , 0 和 S 3 , 0 的可诱导性由 Falgas-Ravry 和 Vaughan [5] 确定。为了解决 [5] 中的一个猜想,Huang [10] 扩展了他们的结果,确定了对所有 k \xe2\x89\xa5 2 的 S k, 0 的可诱导性,表明它是通过对入度为 0 的部分进行不平衡的弧爆破而渐近获得的。注意,由于任何有向图的可诱导性等于通过反转所有弧得到的有向图的可诱导性,因此可以考虑有向星号 S k,\xe2\x84\x93 ,使得 k \xe2\x89\xa5 \xe2\x84\x93 。特别地,Huang 的结果还确定了对所有 \xe2\x84\x93 的 S 0 ,\xe2\x84\x93 的可诱导性。 [10] 的结果未涵盖的最小定向星是 S 1 , 1 ,即三个顶点上的有向路径。Thomass\xc2\xb4e [16,猜想 6.32] 猜想 i ( S 1 , 1 ) = 2 / 5,这是通过四个顶点上的有向环的迭代爆炸获得的。
许多人认为,通用智能(即解决任意可解问题的能力)是人工可构建的。狭义智能(即解决特定特别困难问题的能力)最近取得了令人瞩目的发展。值得注意的例子包括自动驾驶汽车、围棋引擎、图像分类器和翻译器。通用人工智能 (AGI) 具有狭义智能所不具备的危险:如果在各个领域都比我们聪明的东西对我们的担忧无动于衷,那么它将对人类构成生存威胁,就像我们虽然没有恶意,却威胁着许多物种一样。甚至连如何保持 AGI 的目标与我们自己的目标一致的理论也被证明是难以捉摸的。我们提出了我们所知的第一个渐近无野心的 AGI 算法,其中“无野心”包括不寻求任意权力。因此,我们发现了工具收敛论题的一个例外,大致就是默认情况下,AGI 会寻求权力,包括对我们拥有权力。
我们考虑在度量空间中定位设施以服务于一组自私代理的问题。代理的成本是她自己的位置与最近设施之间的距离。社会成本是代理的总成本。我们感兴趣的是设计无需支付的策略验证机制,该机制的社会成本近似率较小。机制是一种(可能是随机的)算法,它将代理报告的位置映射到设施的位置。如果在任何配置下没有代理可以从错误报告其位置中获益,则机制是策略验证的。这种设置最早由 Procaccia 和 Tennenholtz [21] 研究。他们专注于代理和设施位于实线上的设施博弈。Alon 等人研究了一般度量空间中设施博弈的机制 [1]。然而,他们专注于只有一个设施的游戏。在本文中,我们研究了一般度量空间中的双设施博弈,这扩展了之前的两个模型。我们首先证明确定性策略证明机制的社会成本近似比的 Ω(n) 下界。我们的下界甚至对线度量空间也成立。这显著改善了之前的常数下界 [21, 17]。请注意,线度量空间中有一个匹配的线性上限 [21]。接下来,我们提供了第一个常数近似比为 4 的随机化策略证明机制。我们的机制适用于一般度量空间。对于随机化策略证明机制,之前的最佳上限为 O(n),仅适用于线度量空间。