带漂移的爆炸自回归模型最小二乘估计的渐近性质 J IN L EE ........................................................................................................................................................................................................ 1
摘要:我们提出了一个用于建模信息物理控制系统中攻击场景的新颖框架:我们将信息物理系统表示为一个受约束的切换系统,其中单个模型嵌入了物理过程的动态、攻击模式和攻击检测方案。我们证明,这与混合自动机(即受约束的切换线性系统)中已建立的结果兼容。所提出的攻击建模方法允许大量非确定性攻击策略,并能够将系统安全性表征为渐近性质。通过计算最大安全集,由此产生的新影响指标可以直观地量化安全性的下降以及网络攻击对受攻击系统安全属性的影响。我们通过一个示例展示了我们的结果。
统计学中一个非常重要的问题是两个随机变量之间的依赖程度,或者一个随机变量包含的关于另一个随机变量的信息量。互信息给出了这个问题的答案,但它肯定可以得到改进。互信息总是非负的,但它没有统一的上限。这使得仅基于互信息来解释两个随机变量的关联强度变得困难。这引出了一个问题:互信息必须有多大,才能认为两个随机变量相互依赖,甚至完全依赖?在本文中,我们将通过定义一个标准化的互信息 κ 来考虑这个问题的一个可能的解决方案,该 κ 具有严格介于零和一之间的优点。当且仅当两个随机变量独立时,这个 κ 才具有等于零的理想特性,当且仅当两个随机变量具有一一对应关系时,它才等于一。我们还将考虑 κ 的估计以及我们开发的估计量的渐近性质。
在本篇综述中,我们讨论了非平衡状态下能量涨落的统计描述,这种涨落源于量子系统与测量仪器之间的相互作用,该相互作用应用了一系列重复的量子测量。为了正确量化有关能量涨落的信息,我们推导并解释了交换热概率密度函数和相应的特征函数。然后,我们讨论了 Jarzynski 形式涨落定理 ⟨ e − βQ ⟩ = 1 的有效性条件,从而表明涨落关系对于测量时间间隔内的随机性具有鲁棒性。此外,我们还分析了热特征函数在许多中间量子测量的热力学极限下的后期渐近性质。在这样的极限下,除非系统的哈密顿量和中间测量可观测量共享一个共同的不变子空间,否则量子系统趋向于最大混合状态(因此对应于具有无限温度的热状态)。然后,在此背景下,我们还讨论了当系统在量子芝诺机制下运行时,能量涨落关系如何变化。最后,针对目前在量子应用和技术中普遍存在的二能级和三能级量子系统的特殊情况,说明了理论结果。
量子计算霸权论证描述了量子计算机执行传统计算机无法完成的任务的方式,通常需要某种与传统计算的局限性相关的计算假设。一个常见的假设是多项式层次结构(PH)不会崩溃,这是 P ̸ = NP 命题的更强版本,这导致的结论是,对某些量子电路系列的任何经典模拟所需的时间缩放都比电路大小的任何多项式更差。然而,这个结论的渐近性质使我们无法计算这些量子电路必须具有多少个量子比特,才能使它们的经典模拟在现代经典超级计算机上无法解决。我们改进这些量子计算霸权论证,并通过施加非崩溃猜想的细粒度版本来执行此类计算。我们的前两个猜想 poly3-NSETH( a ) 和 per-int-NSETH( b ) 采用了特定的经典计数问题,这些问题与 F2 上的 n 元 3 次多项式的零点数量或 n × n 整数值矩阵的永久项有关,并断言解决这些问题的任何非确定性算法都需要 2cn 个时间步长,其中 c ∈{a,b}。第三个猜想 poly3-ave-SBSETH( a ′ ) 断言了类似的命题,即平均情况算法存在于复杂度类 SBP 的指数时间版本中。我们分析了这些猜想的证据,并论证了当 a = 1/2、b = 0.999 和 a ′ = 1/2 时它们是合理的。
量子计算霸权论证描述了量子计算机执行传统计算机无法完成的任务的方式,通常需要某种与传统计算的局限性相关的计算假设。一个常见的假设是多项式层次结构(PH)不会崩溃,这是 P ̸ = NP 命题的更强版本,这导致的结论是,对某些量子电路系列的任何经典模拟所需的时间缩放都比电路大小的任何多项式更差。然而,这个结论的渐近性质使我们无法计算这些量子电路必须具有多少个量子比特,才能使它们的经典模拟在现代经典超级计算机上无法解决。我们改进这些量子计算霸权论证,并通过施加非崩溃猜想的细粒度版本来执行此类计算。我们的前两个猜想 poly3-NSETH( a ) 和 per-int-NSETH( b ) 采用了特定的经典计数问题,这些问题与 F2 上的 n 元 3 次多项式的零点数量或 n × n 整数值矩阵的永久项有关,并断言解决这些问题的任何非确定性算法都需要 2cn 个时间步长,其中 c ∈{a,b}。第三个猜想 poly3-ave-SBSETH( a ′ ) 断言了类似的命题,即平均情况算法存在于复杂度类 SBP 的指数时间版本中。我们分析了这些猜想的证据,并论证了当 a = 1/2、b = 0.999 和 a ′ = 1/2 时它们是合理的。