Marquez, 2 R. O'Connor 1,3 1 都柏林城市大学物理科学学院,格拉斯内文,都柏林 9,爱尔兰 2 工程技术学院,物理和数学系,自治
由于植物繁殖,在最近几十年中,农作物产量和质量在全球范围内提高,从而改善了粮食安全。但是,人类饮食习惯和偏好的气候变化和偏好的转变对作物生产的新压力,以提供足够的数量和质量,以确保子孙后代的食物。本评论的论文描述了当前的最新方法,并列出了与外星人浸入小麦有关的创新方法,重点是与质量,功能特征,营养特性和新食品开发有关的方面。还讨论了新颖和传统的植物育种方法有助于在植物育种中使用外来种质的好处。原则上,黑麦的基因渗入是小麦最广泛使用的外星基因来源。此外,新型抗性基因对疾病和害虫的结合已成为小麦基因组中最转移的基因类型。将新型抗药性基因纳入疾病和害虫中的小麦基因组对于提高粮食安全的繁殖至关重要。从例如黑麦和Aegilops spp。也有助于提高营养和功能质量。最近的研究表明,对黑麦染色体3染色体的基因小麦的渗入对干旱治疗期间的产量,营养和功能质量以及质量稳定性都影响,这是在气候变化场景下对粮食安全的另一个非常重要的特征。此外,通过将较高的矿物质水平或较低水平的抗营养化合物贡献给例如,基于植物的植物产物代替基于动物的食物替代品,将外星基因渗入小麦有可能改善未来食品的营养谱。总而言之,本评论的论文重点介绍了巨大的机会,并展示了一些例子,说明了如何通过使用来自外星人来源的基因,例如黑麦和其他亲戚到小麦的粮食和新型小麦产品中的粮食安全和营养质量。新颖和即将推出的植物育种方法,例如全基因组关联研究,基因编辑,基因组选择和速度育种,有可能补充传统技术,以保持与气候变化和消费者饮食习惯保持同步。
Thermo Scientific™Phusion™高保真DNA聚合酶启用了高性能PCR。自推出以来,Thermo Scientific™Phusion™产品已不断改进,以应对更多的应用和挑战。最新的添加(Thermo Scientific™Phusion™加上DNA聚合酶)适用于许多应用,因为它的高忠诚度,鲁棒性,抑制剂耐受性和通用引物退火。
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否做了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。知识共享公共领域贡献豁免(http://creativecom-mons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
未来对月球的任务将彻底改变我们的行星殖民化方法。这些任务的核心是对月球表面上丰富的月球灰尘和雷果的有效管理和利用。正在探索一种创新的方法,即具有微生物,尤其是丝状真菌的原位研究利用(ISRU)。这些是通过称为生物无能或生物培训的过程从月球岩石中提取有价值的金属和矿物质的有前途的候选人。该技术旨在使用当地的月球材料来支持月球长期操作,从而减少对基于地球的昂贵的补给的需求。
1Genética系,格拉纳尔,西班牙,里诺,里诺大学,里诺,里诺,里诺大学,里诺大学,里诺,里诺,里诺,里诺,里诺,里诺,北V89557- 0314,美国美国,西班牙西班牙生态部4号葡萄牙,14853年,美国14853,美国 。1Genética系,格拉纳尔,西班牙,里诺,里诺大学,里诺,里诺,里诺大学,里诺大学,里诺,里诺,里诺,里诺,里诺,里诺,北V89557- 0314,美国美国,西班牙西班牙生态部4号葡萄牙,14853年,美国14853,美国。
。CC-BY-NC-ND 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者,此版本于 2020 年 1 月 8 日发布。;https://doi.org/10.1101/2020.01.07.897280 doi:bioRxiv 预印本
叶锈病是由Triticina Eriksson(PT)引起的,是小麦最严重的叶面疾病之一。抗叶生锈的育种是控制这种毁灭性疾病的实用且可持续的方法。在这里,我们报告了LR47的鉴定,LR47是一种从aegilops speltoides渗入小麦的广泛有效的叶子抗锈蚀基因。LR47编码均匀的亮叶核苷酸核苷酸结合重复蛋白,既具有必要又具有足够的能力来赋予PT耐药性,如功能丧失突变和转基因互补所证明。LR47渗透线,没有或减少了连接阻力,并开发了LR47的诊断分子标记。LR47蛋白的盘绕螺旋结构域无法诱导细胞死亡,也没有自蛋白相互作用。LR47的克隆扩大了可以掺入多基因转基因盒中以控制这种毁灭性疾病的叶片锈基基因的数量。
我们已经对Potamopyrgus estuarinus和Potamopyrgus kaitunuparaoa进行了测序,组装和分析的核和线粒体基因组和转录组,这是新西兰人的两个Prosobranch Snail物种,它们跨越了从河口到新淡水。这两个物种是淡水物种的最接近的亲属,potamopyrgus antipodarum是研究性别,宿主 - 寄生虫协同进化和生物侵入性的模型,因此为理解其异常生物学提供了关键的进化环境。P. esuarinus和P. kaitunuparaoa基因组的大小和整体基因含量非常相似。对基因组含量的比较分析,认为这两个物种具有涉及减数分裂和精子功能的几乎相同的基因,包括七个具有减数分裂特异性功能的基因。这些结果与这两个物种的强制性再生产是一致的,并为对抗杀虫假单胞菌的未来分析提供了一个框架,该物种既包含义务性的性和无性无性谱系,每个物种分别源自性祖先。全基因组多基因的系统发育分析表明,Kaitunuparaoa可能是最接近抗植物的。尽管如此,我们表明,埃斯图拉林和P. kaitunuparaoa之间存在相当大的渗透。该渗入不会扩展到线粒体基因组,该基因组似乎是雌雄同体和kaitunuparaoa P. estuarinus和P. kaitunuparaoa之间杂交的障碍。核编码基因,其产物在关节线粒体核酶复合物中的作用表现出相似的非渗透模式,这表明线粒体和核基因组之间的不兼容性可能阻止了这两种物种之间更广泛的基因流动。
1生态学,进化和保护生物学计划,伊利诺伊大学乌尔巴纳 - 康普尼亚大学,伊利诺伊州乌尔巴纳 - 康普纳姆,伊利诺伊州乌尔巴纳2号,美国2鱼类和野生动物科学系,爱达荷州爱达荷州莫斯科大学,爱德荷大学,爱德华大学,美国爱德荷大学3美国进化论,生态学,行为,伊利诺伊州,伊利诺伊州大学,伊利诺伊州 - 欧巴纳 - 培训学院,乌尔巴纳(Urbana-Champaign)尤金(Eugene)或美国5号行为,生态,进化和系统学计划,马里兰州大学,学院公园,医学博士6美国6脊椎动物动物学系,国家自然历史博物馆,史密森尼学会,华盛顿特区史密森尼学会,美国,美国7 7自然资源与环境科学系7 1138年,莫斯科,ID 83844,美国。电子邮件:kiralong778@gmail.com; W-523 Turner Hall,1102 S. Goodwin Avenue,Urbana,IL 61801,美国。电子邮件:jbrawn@illinois.edu