摘要:这项研究的目的是确定预期气候变化对坡度稳定性的影响。为此,选择了2021年触发的斜率不稳定性的案例研究。考虑了降雨理论在施用中的降雨理论,并使用地理局的渗水/W模块进行坡度的表面内部模型。进行了斜率的参数稳定性分析,以确定气候变化对斜率稳定性的重要性。体积水含量,渗透率,毛孔压力和地下水流量变化的条件很重要。当土壤渗透率较低时,在降雨事件和随后的日子中,安全系数会降低,而当渗透率较高时,降雨事件后的安全性会提高。较低的内聚力的效果几乎是线性的,每1 kPa的内聚力减少了,安全系数降低了0.1。水的净滤水增加可能是斜率不稳定的最关键因素。分析的结果表明,与预期的气候变化相比,与修复山体滑坡的成本相比,从上路和斜坡上及时降低水网的效果和适当的地表水径流将是一个相对简单且廉价的措施。因此,建议根据气候变化的潜在影响,分析有关预期气候变化的所有斜率。
13. 保修除外情况。上述“工艺”保修不涵盖因以下原因造成的任何缺陷:(1) 超出 Tesla 合理控制范围的事件,包括但不限于雷击、水灾、地震、火灾、强风和其他极端天气事件、事故、滥用、误用或疏忽;(2) 购买者未根据适用的用户手册操作或维护产品;(3) 被球或其他物体撞击、污垢、灰尘、鸟粪、动物、昆虫、树叶或藻类生长;(4) 非 Tesla 安装的配件、附件或其他材料周围渗水;(5) 非 Tesla 安装的与产品连接的任何材料或设备;或 (6) Tesla 以外的其他人安装、改动、拆卸、重新安装或维修产品的任何部分,除非该人员按照适用的用户手册进行操作。 “工艺”质保也不涵盖:(i) Tesla 工作中所使用的设备或部件(如断路器、配电盘、暖通空调设备的软启动装置等)的任何缺陷;(ii) 现场的既有状况,包括但不限于未经许可的状况、不当的电线、破裂或碎裂的砖石;(iii) 正常磨损或损坏,或不影响产品性能或功能/完整性的表面缺陷、凹痕或痕迹;或 (iv) 盗窃或故意破坏。上述“存储系统”的质保不受上述除外条款的约束,但受质保文件中所述的其他除外条款的约束。
SABIC的目的是碳中立性,其目标是到2030年的范围1和2温室气体的排放量从2018年的基线降低20%。为了支持这一点,SABIC计划将3至40亿美元的能源效率,可再生能源和碳捕获技术投资,并在流程优化方面进行了巨大的资本支出。SABIC在能源效率,可再生能源,渗水参与和CCUS开发方面的举措预计将产生可观的能源和成本节省,强调其主动的可持续性方法。但是,萨比奇缺乏特定的范围3排放目标,占其足迹的70%。需要对结果和影响进行更详细的报告,以验证其通过供应商和客户参与度减少间接排放的努力。萨比奇(Sabic)对气候相关风险的财务风险超过11.5亿(3.06亿美元)。公司展示了一种强大的监管合规性,身体影响分析和市场适应的方法。仍然,风险管理财务影响的透明度,包括升级和变化的成本以及对排放的潜在影响,将提高其过渡性信誉。总而言之,SABIC可能会长期达到其范围1和2的目标,但是缺乏范围3的目标使公司与2030年的2°C变暖方案保持一致。
• 任何建筑物的通信室数量和位置将由结构化布线方案的要求决定。Cat 6A 规范规定固定布线的最大长度为 90 米。• 为了限制多层建筑中的电缆长度,通信室应位于立管附近。• 通信室之间的连接以及从通信室到网络主干的连接必须通过光纤进行。应使用带有 LC-LC 双工连接器的 OS2 单模和 OM3 多模光纤。• 数据需求有限的小型外部建筑可以通过位于合适位置的专用机柜而不是单独的通信室提供服务,但须经 IT 服务部门书面同意。• CR 的设计寿命可达 25 年或更长,典型的活跃设备寿命为 8 - 10 年。应考虑扩展和重新装备。• 房间设计必须考虑工作人员和设备的物理访问、照明、温度和湿度、隔音、地板负荷和物理安全。 • 在工作开始前和修订时,必须将图纸和规格提交给 IT 服务项目经理征求意见。所有图纸等必须具有唯一标识,并标明日期和版本号。 • 所有 CR 都应可直接进入,无需通过有人居住的房间。通常,这将在公共走廊外。允许外部进入,前提是安全摄像头监控入口,并且门是重型安全门。 • 每个主 CR 应由两条物理上独立且不同的光纤电缆路线提供服务。必须在设计阶段与 IT 服务项目经理商定路线。 • 渗水是通信设施的已知风险。除为空间提供必要服务的管道系统(例如喷水灭火系统和冷却系统)外,供水和排水等管道系统不应穿过空间。 • 所有 CR 都不应位于厕所、厨房或任何其他有自来水供应的空间下方。 • BMS 服务(例如 BMS、照明、灯饰和消防面板)可能在 CR 内共享。然而,这些设备仍然与任何 IT 服务网络设备和机架分开。
宾汉姆峡谷矿周围被 60 多亿吨(54 亿吨)废石所包围,这些废石是 1903 年至今露天采矿过程中产生的,废石面积约为 2,000 公顷。废石堆从顶部到底部厚度超过 300 米。1930 年至 2000 年,废石堆的选定部分使用基于硫酸铁的浸出剂主动浸出以提取铜,而其他部分仅接受流星浸出。从 2011 年至今,力拓肯尼科特公司研究了宾汉姆峡谷矿废石堆水质的演变及其地球化学控制因素。在此项目中,通过现场测井和 13 个成对的钻孔仪器对废石堆进行了详细描述;在 13 个地点中的 12 个,钻孔穿透了垃圾场的整个深度,穿过了采矿前的土壤接触面,进入了基岩。钻孔深度接近地表以下 275 米,使用旋转声波钻孔方法,以便 (1) 回收岩心和 (2) 测量近现场特性。钻孔的现场记录包括统一土壤分类系统描述、碎屑岩性、相对氧化、糊状物 pH 值和地球物理方法(陀螺仪、温度、中子和伽马)。对钻孔岩心的岩土特性(密度、粒度分布、含水量、塑性指数和极限、直接和块体剪切)进行了分析,通过扫描电子显微镜 (QEMSCAN) 对矿物进行了定量评估,改进了酸碱核算 (ABA),改进了合成沉淀浸出程序 (SPLP),通过 Corescan 进行了高光谱分析,并采集了水样(如果遇到)。钻孔内安装的仪器包括渗水仪、热敏电阻节点、直接温度传感 (DTS) 光纤电缆、时域反射 (TDR) 剪切电缆、气体(氧气、二氧化碳)测量管和振线压力计 (VWP)。此外,每个钻孔点都对当地废石表层的氧气消耗进行了多次测量。从钻孔中获取的数据与广泛钻探、矿物学和岩石地球化学评估、水力和示踪剂测试以及 20 年的渗流和水质数据的历史信息(超过 50 年)相关联,以开发一个描述废石堆的水力、地球化学和物理行为的概念模型。废石堆中的黄铁矿和其他硫化矿物因空气的扩散和对流进入而氧化,产生酸性、高总溶解固体的废水,以及在废石中形成的黄钾铁矾,作为储存额外酸性的次生相。主要的空气进入机制是对流,占废石堆中硫化物氧化的 90% 以上。根据废石堆的温度分布和水平衡,地球化学反应造成的水分损失占水预算的很大一部分。1.0 简介力拓肯尼科特宾汉峡谷矿场现有的废石堆占地约 2,000 公顷,包含超过 60 亿吨(5.4 亿吨)的材料。从 1930 年左右开始,人们一直在对废石堆进行浸出以回收铜,直到 2000 年停止浸出。