外部腔内波长激光,其特征在于其特殊的时间连贯性和广泛的调谐范围,它是尖端的纤维感应,例如纤维传感,刺激和光谱镜的至关重要的光源。光学通信技术的新兴增长升级了对线宽和广泛调整范围狭窄的激光器的需求,从而促进了外部波长 - 腔内扫描二极管激光及其多样化应用的迅速发展。本文全面地介绍了这些激光器的配置和操作原理,并对其发展状态进行了深入的审查,专门针对那些具有狭窄线宽和较宽调整范围的人。目的是为参与波长激光的开发和应用的研究人员提供宝贵的参考。
参考文献1。Desnick RJ,Ioannou Ya,Eng CM。α-半乳糖苷酶A缺乏:Fabry病。in:Beaudet AL,Vogelstein B,Kinzler KW等,编辑。遗传疾病的在线代谢和分子碱基。纽约,纽约:麦格劳 - 希尔公司,Inc; 2014 2。Schiffmann R. Fabry病。Pharmacol Ther。2009年4月; 122(1):65-77。3。pmid:19318041 2。Rombach SM,Smid BE,Bouwman MG,Linthorst GE,Dijkgraaf MG,Hollak CE。长期酶替代疗法:Fabry病:对肾脏,心脏和大脑的有效性。orphanet j Rare。2013年3月25日; 8:47。4。Azevedo O,Gago MF,Miltenberger-Miltenyi G,Sousa N,Cunha D. Fabry Dise疾病疗法:最新和目前的挑战。int J Mol Sci。2020年12月28日; 22(1):206。5。Coutinho,M.,Santos,J.,Alves,S。更少:溶酶体储存障碍的底物还原疗法。IJMS 17,1065(2016)。 6。 Mistry,P。K.,Lukina,E.,Ben Turkia,H.,Shankar,S。P.,Baris,H.,Ghosn,M.,Mehta,A.在未经治疗的成年人患有1型高陈氏病的成年人中进行了18个月后的结局:第3阶段参与试验。 AM J Hematol 92,1170–1176(2017)。IJMS 17,1065(2016)。6。Mistry,P。K.,Lukina,E.,Ben Turkia,H.,Shankar,S。P.,Baris,H.,Ghosn,M.,Mehta,A.在未经治疗的成年人患有1型高陈氏病的成年人中进行了18个月后的结局:第3阶段参与试验。AM J Hematol 92,1170–1176(2017)。
燃料电池可能是将燃料转化为电能的最有效、最清洁的方式之一,因为它们避免了化学能转化为热能和热能转化为机械能的步骤。固体氧化物燃料电池 (SOFC) 是一种燃料电池,通常在 500 至 1000 C 之间运行。SOFC 中使用的标准材料是:氧化钇稳定氧化锆 (YSZ) 作为电解质,镍 - YSZ 金属陶瓷作为燃料电极,镧锶锰氧化物 (LSM) - YSZ 复合材料作为氧电极。1 尽管针对三种主要组件中的每一种都提出了多种具有增强初始性能的新型材料选择,但上述标准材料仍然是首选,因为它们在长期运行中具有耐用性。 2 例如,其他氧电极材料如镧锶钴铁氧体 (LSCF) 存在一些缺点,包括化学反应性和由于热膨胀系数 (TEC) 与标准 YSZ 的差异而导致的匹配性差。为此,已经提出了各种策略来改进标准氧电极。对于 LSM/YSZ 电极,YSZ 在中温 (IT) 范围 (700 C) 内的电导率相对较低,而 LSM 在此 IT 范围内主要是高极化电阻,限制了标准 SOFC 组件在 800 C 以下工作温度下的使用。为了降低基于 LSM - YSZ 的电池的工作温度,已经成功提出了选择性浸渍/过滤溶液基前体以形成纳米颗粒催化剂
一般CCS参考艾伯塔省政府。2023。碳捕获,利用和存储。在线网站actalberta.ca。Bachu,S.,Heidug,W。和Zarlenga,F。2005。第5章。地下地质存储。在书中:IPCC有关CO2捕获和隔离的特别报告。(第195-265页)。出版商:剑桥大学出版社。英国地质调查局。2023。碳捕获和存储(CCS),BGS研究。网站资源。Dwivedi,R。2019。什么是碳固存。https://www.azocleantech。com/com/acrat.aspx?aprentid = 28 Halder,S。2022。揭示了碳捕获和存储的最佳见解。TGS在线文章。Kaplan,L。2023。全球CCUS支出预计到2023年至2030年之间的2560亿美元超过2560亿美元。Rystad Energy。 Kelemen,P.,Benson,S.M。,Pilorge,H.,Psarras,P。和Wilcox,J。 2019。 概述矿物质和地质形成中二氧化碳存储的状态和挑战。 气候期刊的边界1:9,www.frontiersin.org。 国际CCS知识中心。 2020。 一目了然的碳捕获存储。 海报。 CCS知识中心,萨斯喀彻温省Regina。 Lacey,D。2023。 CCS:挑战,机会和需求。 BOE中的文章。 IEA CCUS项目数据库。 2023。https://www.iea.org/data-and-Statistics/Data-Product/ccus-projects-database database oldenburg,C. 2011。 章节。Rystad Energy。Kelemen,P.,Benson,S.M。,Pilorge,H.,Psarras,P。和Wilcox,J。2019。概述矿物质和地质形成中二氧化碳存储的状态和挑战。气候期刊的边界1:9,www.frontiersin.org。国际CCS知识中心。2020。一目了然的碳捕获存储。海报。CCS知识中心,萨斯喀彻温省Regina。Lacey,D。2023。CCS:挑战,机会和需求。BOE中的文章。 IEA CCUS项目数据库。 2023。https://www.iea.org/data-and-Statistics/Data-Product/ccus-projects-database database oldenburg,C. 2011。 章节。BOE中的文章。IEA CCUS项目数据库。2023。https://www.iea.org/data-and-Statistics/Data-Product/ccus-projects-database database oldenburg,C. 2011。章节。地质碳固并作为减轻CO2排放的全球战略:可持续性和环境风险。劳伦斯·伯克利国家实验室,www.osti.gov Robertson,B。和Mousavian,M.2022。碳捕获关键:经验教训。IEEFA(能源,经济学和财务分析研究所)文章。 美国能源部。 1999。 碳固相研究和开发。 报告可在www.ornl.gov/carbon_sepertration/ 上获得IEEFA(能源,经济学和财务分析研究所)文章。美国能源部。1999。碳固相研究和开发。报告可在www.ornl.gov/carbon_sepertration/
摘要背景:复发性扩散性去极化 (SD) 发生在卒中和创伤性脑损伤中,被认为是损伤进展的标志。活体大脑中与 SD 相关的条件很复杂,这促使研究人员研究活体大脑切片制剂中的 SD,但实验室之间的方法差异使综合数据解释变得复杂。在这里,我们对活体大脑切片中 SD 的演变进行了比较评估,这些切片响应选定的 SD 触发器并在各种培养基中,在其他标准化实验条件下进行。方法:制备大鼠活体冠状脑切片 (350 μm) (n = 51)。使用低渗培养基 (Na + 含量从 130 降至 60 mM,HM) 或氧-葡萄糖剥夺 (OGD) 来引起渗透性或缺血性挑战。用人工脑脊液 (aCSF) 灌注的脑切片作为对照。在对照条件下通过压力注射 KCl 或电刺激诱发 SD。通过皮层内玻璃毛细管电极记录局部场电位 (LFP),或在白光照射下进行内在光信号成像以表征 SD。使用 TTC 和苏木精-伊红染色评估组织损伤。结果:严重渗透应激或 OGD 会引发自发性 SD。与 aCSF 中触发的 SD 相反,这些自发去极化的特点是复极不完全且持续时间延长。此外,HM 或 OGD 下的皮质 SD 会传播到整个皮质,偶尔会侵入纹状体,而 aCSF 中的 SD 在停止之前覆盖的皮质区域要小得多,并且从未扩散到纹状体。HM 中的 SD 显示出最大的幅度和最快的传播速度。最后,HM 中的自发性 SD 以及尤其是在 OGD 下的自发性 SD 之后会出现组织损伤。结论:虽然 Na + /K + ATP 酶的失效被认为会损害 OGD 相关 SD 的组织恢复,但组织肿胀相关的过度兴奋和星形胶质细胞缓冲能力的耗尽被认为会促进渗透应激下的 SD 进化。与 OGD 相比,在低渗透条件下传播的 SD 不是终点,但它与不可逆的组织损伤有关。需要进一步研究以了解 HM 中自发发生的 SD 进化与 OGD 下的 SD 进化之间的机制相似性或差异性。关键词:脑切片、脑缺血、扩散性去极化、渗透应激、氧葡萄糖剥夺
抗静电材料2、电磁屏蔽3、压阻传感器4和形状记忆聚合物(SMP)材料。5,6聚合物和CNT的纳米复合材料的电导率随着纳米填料含量的增加而急剧增加,超过渗透阈值,该阈值被描述为在3D空间中形成互连接触导电网络的临界值。此外,通过加入CNT,聚合物的绝缘体-导体转变可以在低渗透阈值下实现,这取决于CNT的排列程度和单个CNT的均匀空间分布。尽管如此,由于纳米管之间的范德华相互作用引起的高电子离域性,MWCNT倾向于在液体或固体介质中形成团聚体和束。
不同的气体传感设备在内,包括化学剂,[8]晶体管,[9]和光传感器。[10]此外,已经设计了基于小分子的分子半导体的绝缘子杂音,以实现稳定的气体检测。[11]在各种材料和设备构造中,基于CP的化学仪被认为是气体传感的最简单方法之一。[12] CP在设备制造过程中作为感应层沉积,CPS和分析物气体分子之间的相互作用会导致感应层的电导率变化,可以轻松监测。敏感性是化学固定器传感性能的最重要参数之一,迄今为止已经开发了各种方法来改善它。在所有报告的方法中,纳米结构被视为一种有效的策略,因为具有较高表面积面积的形态 - 体积比的形态可以通过提高气体分子的扩散速率进入基于CP的传感层和提供更多的结合位点,从而提高灵敏度。为了创建纳米结构的表面,CPS过去曾通过复杂的过程进入不同的结构,包括纳米管,纳米线,纳米管,纳米骨,纳米颗粒和纳米纤维。[13]
摘要 —本文研究了混合发电(同步发电机 (SG)、电网形成 (GFM) 和电网跟踪 (GFL) 逆变器)的微电网暂态稳定性,随着渗透水平的提高,朝着 100% 可再生能源发电微电网迈进。具体来说,通过电磁暂态研究评估了具有 SG 和 GFL 逆变器的微电网、具有 GFM 逆变器的 SG 以及具有 GFM 和 GFL 逆变器的 SG 在每种渗透情况下的动态,其中有两个关键动态事件:计划外孤岛和泵送感应电机负载中的切换。分析和仿真结果表明,与 SG 并联运行的 GFL 逆变器的微电网可以提供比 GFM 逆变器更快的功率响应,以补偿频率和电压的偏差。混合 SG、GFM 和 GFL 逆变器的方案具有最佳的暂态和稳态稳定性,以实现 100% 基于逆变器的资源 (IBR) 渗透。这项综合研究为微电网工程师在面临安装 IBR(GFL、GFM 或混合)的各种选择时了解微电网的稳定性提供了有用的参考。
摘要 随着基于逆变器的可再生能源 (IBR) 的快速整合,岛屿电力系统的能源脱碳进程不断加快。此类系统的独特之处在于,由于潜在的发电中断或可再生能源不可预测导致的不平衡,频率会快速变化,这对在没有外部支持的情况下维持频率最低点提出了重大挑战。本文提出了一种具有数据驱动的频率最低点约束的机组组合 (UC) 模型,包括频率最低点或最小惯性要求,有助于限制发电机严重停运后的频率偏差。这些约束是使用线性回归模型制定的,该模型利用了现实世界的全年发电调度和动态模拟数据。通过在实际岛屿电力系统中使用历史天气数据进行为期一年的模拟,验证了所提出的 UC 模型的有效性。本文还评估了从实际系统运行假设中得出的替代最小惯性约束。研究结果表明,与替代的最小惯性约束相比,所提出的频率最低点约束显著改善了高光伏 (PV) 渗透水平下的系统频率最低点,尽管发电成本略有增加。
燃料电池可能是将燃料转化为电能的最有效、最清洁的方式之一,因为它们避免了化学能转化为热能和热能转化为机械能的步骤。固体氧化物燃料电池 (SOFC) 是一种燃料电池,通常在 500 至 1000 C 之间运行。SOFC 中使用的标准材料是:氧化钇稳定氧化锆 (YSZ) 作为电解质,镍 - YSZ 金属陶瓷作为燃料电极,镧锶锰氧化物 (LSM) - YSZ 复合材料作为氧电极。1 尽管针对三种主要组件中的每一种都提出了多种具有增强初始性能的新型材料选择,但上述标准材料仍然是首选,因为它们在长期运行中具有耐用性。 2 例如,其他氧电极材料如镧锶钴铁氧体 (LSCF) 存在一些缺点,包括化学反应性和由于热膨胀系数 (TEC) 与标准 YSZ 的差异而导致的匹配性差。为此,已经提出了各种策略来改进标准氧电极。对于 LSM/YSZ 电极,YSZ 在中温 (IT) 范围 (700 C) 内的电导率相对较低,而 LSM 在此 IT 范围内主要是高极化电阻,限制了标准 SOFC 组件在 800 C 以下工作温度下的使用。为了降低基于 LSM - YSZ 的电池的工作温度,已经成功提出了选择性浸渍/过滤溶液基前体以形成纳米颗粒催化剂