随着人们的生活质量的不断提高,近年来能源消耗日益增加。即将到来的全球能源危机引起了全世界的关注。此外,传统燃料的减少会引起能源危机,传统燃料的燃烧会引起温室的影响,这对人们的现有环境产生了重要的威胁。在这种严峻的情况下,多年来的大量研究集中在将相变材料(PCM)纳入建筑材料中,以实现节能和传热增强的目的。1,2将PCM纳入具有稳定形状的建筑材料中,近年来已被广泛考虑。PCM是一种新型的功能材料,通过改变形式并保持温度不变,吸收或释放大量能量。它在建筑能源节能,太阳能利用,热恢复,温度控制,电池热管理和其他ELD的应用方面具有良好的前景。3 - 7根据相变状态,PCM通常分为三类:固体 -
标题:气候行动中的平等:计划非洲的性别包容未来。执行机构:联合国妇女(领导),UNFCCC,开发计划署地理覆盖范围:撒哈拉以南非洲日期:2024年4月16日至8日,地点:unon Complex,Gigiri,Nairobi,肯尼亚背景非洲地区对全球气候变化的影响和后果对全球温室的贡献很小,与全球温室燃气相比,众多气候变化影响了许多贡献。这种影响包括升高的平均温度,反复的干旱和洪水在非洲人部分地区的陆地滑坡,海平面上升,降水降低,导致荒漠化,森林砍伐,土地退化和荒漠化,降低了农业生产力,降低了农业生产力,增加了食品中的粮食和贫困的迁移,以及其他迁移,以及越来越多的自然资源,以及越来越多的自然资源。
摘要:本研究对欧盟温室农业部门的能源使用情况进行了回顾。所介绍的研究表明,温室的能源使用情况多种多样,通常依赖于化石能源。高能量系统在北欧占主导地位,通常受气候控制,能源使用以加热和冷却过程为主,而低能量系统在南欧占主导地位,则表现出多种能源使用,包括加热、冷却、灌溉、照明、化肥和杀虫剂。我们的回顾还讨论了温室生产的能源效率措施和可再生能源采用。最后,我们的回顾表明,关于温室生产能源使用的准确可靠的研究很少且支离破碎,目前使用各种不同的方法来估计农场的能源使用情况。我们认为,制定一套用于测量温室农业生产能源使用的全面方法和分类将促进该领域的进一步研究,大大提高我们对温室能源使用的理解,并支持绿色转型。基于此,本文提出了一个测量温室农业能源使用的基本框架。
1 IPCC,2018年:决策者摘要。在:1.5°C的全球变暖。一份IPCC特别报告,关于在工业水平高于工业水平及相关全球温室的全球变暖的影响,在加强全球对气候变化,可持续发展的威胁,可持续发展以及消除贫困的努力的反应的背景下[Masson-Delmotte,V.Pörtner,D。Roberts,J。Skea,P.R。Shukla,A。Pirani,W。Moufouma-Okia,C。Péan,R。Pidcock,S。Connors,J.B.R。Matthews,Y。Chen,X。Zhou,M.I。 Gomis,E。Lonnoy,T。Maycock,M。Tignor和T. Waterfield(编辑)]。 剑桥大学出版社,英国剑桥和美国纽约,美国,pp。 3-24。 https://doi.org/10.1017/9781009157940.001Matthews,Y。Chen,X。Zhou,M.I。Gomis,E。Lonnoy,T。Maycock,M。Tignor和T. Waterfield(编辑)]。剑桥大学出版社,英国剑桥和美国纽约,美国,pp。 3-24。 https://doi.org/10.1017/9781009157940.001剑桥大学出版社,英国剑桥和美国纽约,美国,pp。3-24。 https://doi.org/10.1017/9781009157940.0013-24。 https://doi.org/10.1017/9781009157940.001
摘要:根系的高度适应性义务内寄生虫,root-nematodes(meloidog- yne spp。),对农作物造成极大的破坏。我们的研究旨在评估拮抗剂真菌和细菌菌株对俄罗斯南部最占地的根管线虫的有效性。通过分子遗传鉴定,发现在俄罗斯南部,Meloidogyne Hapla Chitwood物种,1949年,Meloidogyne Incognita(Kofoid and White,1919年)Chitwood,1949年,在开放式和温室的根源和温室中。在实验室进行了对第二阶段少年(J2)M。Hapla的筛查。在实验结束时,分离出了两种淡莫莫克斯少量BK-6和metarhizium arisopliae bk-2的液体真菌培养物,它们的nematicidal活性达到100.0和70.2%,并超过了生物标准(Nemotafagagin-Mikopro)的值,并超过38.4%和8.4%。在植入番茄之前,在植入番茄之前,在引入土壤中时,在淡紫色BK-6,M。AnisopliaeBK-2和Arthrobotrys conoides bk-8的液体培养物中发现了最高的生物效率。与对照组相比,根部形成的胆囊数量较低,为81.0%,75.5%和74.4%。
本研究探索了将太阳能和风能等可再生能源整合到水培温室中供电的可行性。这样,水培温室的能源自主性就得到了保证。研究首先评估了所研究系统的年用电量。还设计了一个能够满足其全年能源需求的可再生能源系统。主要目标是评估两种可再生能源(即光伏板和风力涡轮机)的效率,并通过实施模型模拟来改善它们在农业室内的整合。研究了两种场景:第一种场景代表与电网相连的带储能的光伏电站,而第二种场景代表与电网相连的风力发电厂。这项数值分析由为期一年的实验研究补充,该研究涉及连接到带储能的网络的光伏装置,而储能又连接到实验装置。为了处理可再生能源温室内的能源,开发了一种基于模糊逻辑控制器的能源管理系统。该系统旨在保持能量平衡并确保持续供电。能源管理系统优化能源流,以最大限度地减少消耗,减少对电网的依赖,提高整个系统的效率,从而节省成本并带来一定的环境效益。
由Arduino Uno微控制器控制的自动化系统的利用可以促进紧凑型温室中植物的有效生长。封闭的温室结构有助于植物传播,因为它在收集感官数据的同时优化了周围环境。温室与相应的特定非生物因子的传感器结构,主要是温度和湿度的DHT11以及土壤水分传感器。然后,从温室环境中的这些数据将由采用潜水水泵和灌溉系统,LED灯以及湿度,温度和水分的传感器进行处理。Arduino Uno作为主要的微控制器能够控制水资源,而传感器为管理温室环境提供了准确的数据。具有自动化功能,例如灌溉系统和土壤水分传感器,节水和熟练程度。LED光提供可靠的光源,可促进最佳的植物生长。通过适当的传感器放置和保护来确保准确的数据收集。通过物联网平台进行远程监控和控制比手动监督工厂环境更实用和方便。基于Arduino Uno-Uno-uno-uno-uno-uno-un-un-un-un-un-un-un-un-un-un-un-un-un-div systems具有巨大的优势,包括减少的体力劳动,成本效益以及农业实践的进步,以抵抗气候变化对农业的损害,并满足不断增长的世界人口的需求。因此,对原型的持续发展对于农业和自动化温室的可持续性是必要的,因为这将进一步有助于采用不断发展的农业发展和植物护理的发展技术。
温室能源建模是优化温室能源消耗的普遍工具。然而,要使模型用于其预期用途,必须对其前命令的精确度具有很高的信心。在本文中,开发了一个经过验证的温室能量模型,用于寒冷气候中典型的小型温室。该模型是使用TRNSYS(一种建筑物性能模拟工具)创建的,具有详细的能量建模组件和用户定义的作物模型。该模型已校准以固定不确定的参数。首先使用灵敏度分析来识别明智的不确定参数,然后进行多阶段自动校准。自动校准方法使用多目标遗传算法来调整不确定的参数,从而校准测得的室内空气温度和相对湿度的模型。该模型在自由浮动和通风阶段(56天)期间表现良好,室内空气温度的均方根误差(RMSE)合并为1.6℃,空气相对湿度为8.3%。验证过程涉及使用两个附加数据集评估校准模型的适用性。在所有情况下,将模拟结果与室内环境测量结果进行比较,气温的RMSE小于2℃,空气相对湿度的RMSE小于10%;这些价值观与文献相比有利。该模型在估算最小加热温室的每月能源消耗时达到了3.7%的平均相对误差(MRE)。鉴于这些结果,该模型被认为足够准确,适用于将来的研究。
依赖温度的生物生产力控制硅酸盐风化,从而扩展了地球的潜在宜居时间。模型和理论考虑表明,地球样系外行星上的失控温室通常伴随着大气中的H 2 O和CO 2的急剧增加,这可能会随着即将到来的空间望远镜的生成而观察到。如果活性生物圈与地球类似地扩展了外部行星的可居住时间潘,则观察可居住区内边缘附近的系外行星的大气光谱可以使人深入了解地球是否居住。在这里,我们为地球状停滞的行星探索了这个想法。我们发现,尽管地幔减少,但表面生物圈将行星的可居住时间延伸约1 Gyr,对于更多的氧化条件,生物学上增强的风化速率越来越多,通过将CO 2的CO 2的供应率提高到大气中。从观察上,在宜居区的内边缘附近的大气CO 2中所产生的差异在具有活跃风化的生物行星和经历了失控的温室的生物行星之间可以区分。在有效的水文循环中,提高的生物生产力也导致JWST可观察到的CH 4生物签名。随着行星无法居住,H 2 O红外吸收带占主导地位,但是4.3- µm CO 2带仍然是CO 2丰度的清晰窗口。总而言之,虽然生命对碳酸盐 - 硅酸盐循环的作用在类似地球的停滞范围的大气谱中留下了记录,但尤其需要未来的工作才能确定构造状态和外部球星的组成,并推动下一代空间望远镜的发展。
摘要。最近已经开发了许多基于新颖的玻璃设计,低发射率薄片涂层以及专有荧光中间层类型的现代玻璃和窗户产品。当今的高级窗户可以控制诸如热发射,热量增益,颜色和透明度之类的属性。在新型的玻璃产品中,还通过图案化的半导体薄膜能量转换表面或使用发光浓度型方法来实现较高的透明度。通常,对于建筑行业和农业的应用(温室)应用,半透明的和高度透明的PV窗口是专门设计的,包括特殊类型的发光材料,衍射微结构,定制的玻璃系统和电路。最近,在构建集成的高透明太阳能窗口中已经证明了显着的进步(具有高达70%的可见光传输,电力输出p max 〜30 33 w p /m 2,例如< /div>,ClearVue PV太阳能窗);这些预计将在温室装置中为智能城市和先进的Agrivoltaics的发展增加动力。目前(2023年),这些ClearVue窗口设计是唯一可以在建筑物中提供明显的能源节省的视觉清晰和部署的建筑材料,同时又具有大量可再生能源的能源。这项研究的目的是将ClearVue®PV窗口系统的最新工业化开发置于发光浓缩器领域中先前研究的更广泛的背景,并提供一些有关在研究温室建筑物包裹中部署的几种Clearvue窗口设计类型的测量性能特征的细节,以阐明其能量差异,并在其相应的差异中进行了差异。提供了这些最近开发的透明Agrivoltaic建筑材料的实际应用潜力的评估,重点关注可再生能源产生数字以及在一项长期研究中观察到的季节性趋势。本文报道了2021年初在默多克大学(澳大利亚珀斯)建造的基于研究温室的Agrivoltaic装置的测量绩效特征。默多克大学的太阳能温室已经证明了由于其建筑物的现场能源生产而产生的明显节省的商业粮食生产潜力。