基于海洋温差能转换的多能源系统 李志浩,苏嘉鹏,余晖,金安军*,王静 宁波大学航海学院,浙江省宁波市 315000 *: 通讯作者:(+86) 18600699878; ajjin at nbu.edu.cn 摘要:海洋温差能资源十分丰富,是清洁能源输出的良好条件。首先,全球海洋温差能总量约为400亿kW,而海洋温差能转换(OTEC)清洁可再生,发电稳定,储能能力强,积极开发利用海洋温差能资源对实现海洋强国战略具有重要意义。其次,针对传统OTEC的效率限制,作者提出了一种基于OTEC的多能互补系统来提高系统效率。该方法将太阳能、风能和储能集成到一个互补的OTEC系统中,该互补系统在系统级设置参数。例如,设计了一个1MW的集成发电系统,并通过计算理论模型,利用计算机辅助设计与仿真对该系统进行了研究。太阳能互补供热的OTEC系统的效率可达12.8%,综合效率可达18.6%。此外,OTEC还有许多有益的副产品,被认为对生态系统有益。最后,本文分析了该方法的基本原理和工作过程,并计算了系统效率。结果表明,与传统OTEC相比,互补系统可以提高发电输出效率、稳定性和海洋能利用率。关键词:海洋温差能转换,多能互补,太阳能互补供热,开式循环OTEC1.引言当今世界,能源消耗迅速增加,化石能源日益减少,环境污染和温室效应越来越严重地影响着我们的日常生活。因此,可再生能源对改变能源基础设施,维持人类能源利用的长远发展发挥着重要作用。据统计,赤道以南24°以南1000m处水温约为4℃,海面水温约为30℃,深海与海面温差蕴藏的能量约为10 13 W(Song,2019),海洋温差年发电潜力约为87600TWh,而全球每年的用电量约为16000TWh(Khan et al,2017)。而且海洋能可再生、稳定、清洁、无污染,具有很高的开发利用价值,浩瀚的海洋能资源对全球而言是一笔巨大的资源。海洋热能转换(OTEC)系统通过驱动暖海水和冷深海水之间的热力学卡诺热机来发电。OTEC系统的概念是一种具有百年历史的先进绿色能源技术。历史上众所周知,海洋资源具有巨大的经济价值(Torgeir 2019;Cheng 2019)。在某些情况下,大气沉降
低温差:如果加热或冷却热交换器出现溢流,这并不等同于更高的加热或冷却输出。相反,这会导致供水和回水流之间的温差较小,因为水没有足够的时间释放其能量,从而不会产生实际功率增益。这会导致所谓的低温差。这会影响整个系统的效率,并导致泵和工厂的额外能源需求。真正的温差校正只能在消费者处完成,此功能由 Belimo Energy Valve™ 在激活后自动执行。这可确保系统在其现在延长的整个生命周期内高效运行。
低温差:如果加热或冷却热交换器出现溢流,这并不等同于更高的加热或冷却输出。相反,这会导致供水和回水流之间的温差较小,因为水没有足够的时间释放其能量,从而不会产生实际功率增益。这会导致所谓的低温差。这会影响整个系统的效率,并导致泵和工厂的额外能源需求。真正的温差校正只能在消费者处完成,此功能由 Belimo Energy Valve™ 在激活后自动执行。这可确保系统在其现在延长的整个生命周期内高效运行。
低温差:如果加热或冷却热交换器出现溢流,这并不等同于更高的加热或冷却输出。相反,这会导致供水和回水流之间的温差较小,因为水没有足够的时间释放其能量,从而不会产生实际功率增益。这会导致所谓的低温差。这会影响整个系统的效率,并导致泵和工厂的额外能源需求。真正的温差校正只能在消费者处完成,此功能由 Belimo Energy Valve™ 在激活后自动执行。这可确保系统在其现在延长的整个生命周期内高效运行。
低温差:如果加热或冷却热交换器出现溢流,这并不等同于更高的加热或冷却输出。相反,这会导致供水和回水流之间的温差较小,因为水没有足够的时间释放其能量,从而不会产生实际功率增益。这会导致所谓的低温差。这会影响整个系统的效率,并导致泵和工厂的额外能源需求。真正的温差校正只能在消费者处完成,此功能由 Belimo Energy Valve™ 在激活后自动执行。这可确保系统在其现在延长的整个生命周期内高效运行。
6 EarthWise Systems 水侧:蒸发器温差为 12°F,冷凝器温差为 15°F,高效冷却器。空气侧:设计送风温度为 48°F,区域冷却设定点为 76°F(由于送风温度较低导致室内相对湿度较低,根据 ASHRAE 冷风系统设计指南定义室内舒适度),温和室外条件下送风温度重置(从 48°F 到 60°F),比较焓节能器,并联风扇驱动的 VAV 终端,优化送风管道静压控制(风扇压力优化)。7 传统系统水侧:蒸发器温差为 10°F,冷凝器温差为 10°F,最低 ASHRAE 90.1 冷却器效率。空气侧:55°F 设计送风温度、75°F 区域冷却设定点、固定干球节能器、带再热端子的 VAV、固定送风管道静压控制。
• 采用低压冷却水头运行 » 降低给水泵的功耗 • 降低冷却水温差 » 通过减小冷却水泵尺寸节省电力 • 优化主机设计 » 在不同压力下提供同类最佳效率并更快获得投资回报 • OF 系列压缩机组确保冷却水进出温差仅为
目前热电发电机(TEG)广泛应用于生物医学、军事和太空卫星的电力应用。高功率发电厂的TEG主要用于汽车和工业发动机。本文讨论了TEG作为一种可再生能源。这里应用中的TEG用于热电发电机发电厂。这种热电发电机的工作原理是在TEG的加热侧,珀尔帖(Peltier)涂有铝形式的金属,由加热器加热。而TEG珀尔帖的冷侧则放在散热器(作为散热金属)上。散热器浸没在水中,大约一半或更多被浸没。如果被加热的金属的温度和散热金属的温度有一定的差异,那么温差会导致TEG开始工作。温差越大,产生的电能就越大。然而,如果温差太大,会损坏使用的铋半导体材料。TEG开始工作后,会产生电压和电流。
当层间温差大且接触面大时,热机械应力最大