热成像技术根据斯特藩-玻尔兹曼定律检测物体的表面温度和地下热活动。如果具有更精细的热灵敏度,即噪声等效温差 (NEDT),该技术的影响将更为深远。目前推进 NEDT 的努力都集中在使用更好的相机来改善辐射信号的记录,从而使该数字接近路线图的末尾,即 20 到 40 mK。在这项工作中,我们采用了一种独特的方法,使表面辐射对物体微小的温度变化敏感。在金属-绝缘体转变与结构中的光子共振的共同作用下,热成像敏化剂 (TIS) 的发射率在预编程温度下急剧上升。使用 TIS,NEDT 提高了 15 倍以上,可在接近室温的个位数毫开尔文分辨率,使环境热成像能够用于广泛的应用,例如原位电子分析和早期癌症筛查。
热成像技术根据斯特藩-玻尔兹曼定律检测物体的表面温度和地下热活动。如果具有更精细的热灵敏度,即噪声等效温差 (NEDT),该技术的影响将更为深远。目前推进 NEDT 的努力都集中在使用更好的相机来改善辐射信号的记录,从而使该数字接近路线图的末尾,即 20 到 40 mK。在这项工作中,我们采用了一种独特的方法,使表面辐射对物体微小的温度变化敏感。在金属-绝缘体转变与结构中的光子共振的共同作用下,热成像敏化剂 (TIS) 的发射率在预编程温度下急剧上升。使用 TIS,NEDT 提高了 15 倍以上,可在接近室温的个位数毫开尔文分辨率,使环境热成像能够用于广泛的应用,例如原位电子分析和早期癌症筛查。
随着可再生能源的使用日益增多,为了提高电力弹性(在调节储备能力的同时承受供需之间显著和突然的不平衡的能力),热电厂系统的涡轮旁路系统等中采用了储热系统,以便可以储存启动期间的废热或极低负荷条件下锅炉和涡轮/发电机输出之间的不匹配热量。这种储存的热量可以在高负荷运行时将其能量释放到预锅炉和/或锅炉来发电,从而节省约 2% 或更多的能源。通过利用相变材料(PCM:应用熔化/凝固过程)的大量潜热或通过增加熔盐和水等显热存储材料的温差,可以使储热设备变得紧凑,从而可以安装在发电厂内。我们目前正在开发这种系统,以与电池存储系统相当的单位电容量价格实现其实际应用。| 1. 简介
本研究旨在为歧管找到最佳材料,并改善Unimap汽车赛车团队(UNIART)排气歧管的气流。排气歧管是排气系统的一部分,它收集并从气缸盖到排气插座排气气。排气歧管的设计对发动机性能很重要。使用SolidWorks软件对排气歧管的当前设计和新设计进行了建模。不锈钢,铸铁和低碳钢作为歧管材料,并通过进行稳态热分析来研究。根据压力和速度分析和评估了歧管中空气的流动。在称为ANSYS的计算流体动力学分析软件中模拟流体流量和热分析。热分析的结果证明,不锈钢比其他材料更好,因为它具有高温差和低热量。比较了排气歧管的当前设计和新设计之间的流体流量分析结果。结果表明,经过验证的设计2在出口处具有较高的速度值,在入口处的压力较低,从而改善了排气歧管中的气流。
图 1 太阳能加热器系统 ................................................................................................................ 9 图 2 太阳能加热器的主要方面 ...................................................................................................... 11 图 3 不同集热器的比较 ........................................................................................................ 15 图 4 不同集热器类型的集热器数据 ........................................................................................ 16 图 5 平板集热器 ...................................................................................................................... 21 图 6 集热器效率与温差 ...................................................................................................... 21 图 7 隔热材料的特性 ................................................................................................................ 22 图 8 框架设计 ............................................................................................................................. 23 图 9 太阳能热水器 ................................................................................................................ 23 图 10 太阳能热水器设计 ................................................................................................................ 24 图 11 框架尺寸 ............................................................................................................................. 24 图 12 整个系统(参考文献:10) ................................................................................................ 25 图 13 集热器设计(参考文献:10) ................................................................................................ 25 图14 现金流量图 ................................................................................................................................ 26 图 15 投资回收期 .............................................................................................................................. 27 图 16 投资回收期图 .............................................................................................................................. 27 图 17 太阳能热水器组装模型 ............................................................................................................. 28 图 18 项目计划 ............................................................................................................................. 29
与 RayGen 的方法相比,传统商用 CSP 的高工作温度有几个限制。一方面,CSP 无法从其他连接的可再生能源中实际输入电力来储存额外的能源,而这在充斥着间歇性可再生能源和低或负批发价格的能源市场中变得越来越重要。为了实现可接受的发动机效率,大多数 CSP 系统都需要大型涡轮机,而这又需要高温和非常高的太阳热输入。这需要塔周围有大片区域,这通常会降低平均光学效率。工作流体和大气之间的高温差导致接收器/塔中出现大量热量损失,从而导致在间歇性阴天重新建立标称工作温度的延迟问题。较低的光学效率和较高的热损失意味着给定的工厂容量需要更大的土地占地面积。更高的温度还需要更复杂的设计、特殊材料和设备,而这些设备的采购和维护成本很高。
摘要 建筑外围护结构中的空气泄漏是建筑物供暖和制冷需求的很大一部分原因。因此,快速可靠地检测泄漏对于提高能源效率至关重要。本文介绍了一种从外部确定建筑外围护结构中空气泄漏的新方法,将锁定热成像和鼓风机门系统的热激发相结合。鼓风机在建筑物内产生周期性的过压,导致外表面(立面)泄漏附近的表面温度发生周期性变化。通过以已知频率激发的温度变化,以激发频率对热图像的时间序列进行傅里叶变换,可得到突出显示泄漏影响区域的幅度和相位图像。红外摄像机的周期性激发和检测称为锁定热成像,广泛用于表征半导体器件和无损检测。激发通常通过光、电或机械能量输入实现。在本研究中,在 75 Pa 压差下,以三个 40 秒的激励周期对外墙进行了测量,总测量时间仅为 2 分钟。在光照、风和云量变化很大的条件下,空气温差为 5 至 7 K 时进行了测量。与最先进的差分红外热成像测量相比,测量结果显示检测质量更高,受环境条件变化的影响更小。该方法仅在激励频率下突出显示振幅图像的变化,从而过滤掉由环境影响引起的变化。因此,低至几开尔文的温差就足够了,可以从外部检查大型外墙。该振幅图像已经比用差分热成像创建的图像更清晰。使用标量积对振幅进行相位加权,可以进一步减少图像中不需要的伪影。关键词 锁定、热成像、鼓风机门、气密性、泄漏检测、建筑围护结构、建筑节能 1 引言 不受控制的气流通过建筑围护结构,造成 30-50% 的建筑物供暖能耗 (Kalamees,2007 年;Jokisalo 等人,2009 年;Jones 等人,2015 年)。因此,气密性评估,特别是快速可靠地定位泄漏,对于减少供暖能源需求至关重要。风扇加压法或鼓风机门测试在多项国际标准 (Deutsches Institut für Normung e. V.,2018 年;ASTM,2019 年) 中有规定,用于测量建筑物的整体气密性。然而,泄漏定位很麻烦,需要
摘要 建筑外围护结构中的空气泄漏是建筑物供暖和制冷需求的很大一部分原因。因此,快速可靠地检测泄漏对于提高能源效率至关重要。本文介绍了一种从外部确定建筑外围护结构中空气泄漏的新方法,将锁定热成像和鼓风机门系统的热激发相结合。鼓风机在建筑物内产生周期性的过压,导致外表面(立面)泄漏附近的表面温度发生周期性变化。通过以已知频率激发的温度变化,以激发频率对热图像的时间序列进行傅里叶变换,可得到突出显示泄漏影响区域的幅度和相位图像。红外摄像机的周期性激发和检测称为锁定热成像,广泛用于表征半导体器件和无损检测。激发通常通过光、电或机械能量输入实现。在本研究中,在 75 Pa 压差下,以三个 40 秒的激励周期对外墙进行了测量,总测量时间仅为 2 分钟。在光照、风和云量变化很大的条件下,空气温差为 5 至 7 K 时进行了测量。与最先进的差分红外热成像测量相比,测量结果显示检测质量更高,受环境条件变化的影响更小。该方法仅在激励频率下突出显示振幅图像的变化,从而过滤掉由环境影响引起的变化。因此,低至几开尔文的温差就足够了,可以从外部检查大型外墙。该振幅图像已经比用差分热成像创建的图像更清晰。使用标量积对振幅进行相位加权,可以进一步减少图像中不需要的伪影。关键词 锁定、热成像、鼓风机门、气密性、泄漏检测、建筑围护结构、建筑节能 1 引言 不受控制的气流通过建筑围护结构,造成 30-50% 的建筑物供暖能耗 (Kalamees,2007 年;Jokisalo 等人,2009 年;Jones 等人,2015 年)。因此,气密性评估,特别是快速可靠地定位泄漏,对于减少供暖能源需求至关重要。风扇加压法或鼓风机门测试在多项国际标准 (Deutsches Institut für Normung e. V.,2018 年;ASTM,2019 年) 中有规定,用于测量建筑物的整体气密性。然而,泄漏定位很麻烦,需要
位移速率为 ~2 x 10"^ dpa s"',而 ANL 数据为 525 和 600 C (997 和 1112 F) 下 4-MeV 辐射,位移速率为 5 x 10"^ dpa/s^'。在近似值上,相应数据之间的 25 C (45 F) 温差由通量差补偿,因此我们得出结论,这两项研究的膨胀数据之间具有极好的一致性。结果表明,所用的离子模拟技术与离子能量无关。特别是,这两组数据都没有表现出饱和效应,如 Hudson 等人 [13] 先前报道的 316 型不锈钢在 525 C (997 F) 下用 22-MeV C** 离子辐照的饱和效应。他们的数据如图 1 中的实线所示。在 ~600C (1112F) 的结果中, GE 数据中膨胀的绝对量级大于 ANL 数据中的膨胀量级,但剂量依赖性相似。高温下膨胀的明显差异源于对箔体积的 AF 校正,即 = AF/(F-AI^,仅用于报告 GE 数据。
其他加热和冷却系统利用地上空气温度和浅层地下土壤温度之间自然产生的温差,在温度较高时形成散热器,在温度较低时形成热源。这些系统称为地热热泵 (GHP)。GHP 可以加热和冷却单个家庭,也可以联网为使用 GDHC 系统的区域提供服务。GHP 利用地球的天然绝缘特性来加热和冷却空间,为加热和冷却提供独特且高效的可再生能源技术。在基于 GHP 的系统中,地上电动热泵通过位于浅层地下的一系列埋地管道或地面环路移动水或其他流体。热量从区域获取并在夏季转移到地面。该系统是可逆的,热量从地面获取并在冬季用于建筑物。该系统只移动热量,这比使用燃料或电力产生热量要高效得多。GHP 可以满足全国几乎任何地方的空间加热和冷却需求。