英格兰有 66 个具有特殊科学价值的地点 (SSSI),它们支持或可能支持温带雨林组成部分,总面积为 7,637 公顷。在我们的环境改善计划中,我们承诺所有 SSSI 将在 2028 年 1 月 31 日之前进行最新的状况评估,并且 50% 的 SSSI 将采取行动,在 2028 年 1 月 31 日之前实现有利条件。
摘要。温带草原c。欧洲土地面积的20%。草地生态系统中的碳积累大部分发生在地下,土壤有机碳储备的变化可能是由于土地利用的变化而导致的(例如将可耕地转换为草原)和草原管理。草原也有助于生物圈±大气交换非CO 2辐射活性痕量气体,并与管理实践有关。在本文中,我们讨论了当前有关温带草原碳循环和碳固隔机会的知识。首先,从简单的两参数启动模型®到文献数据,我们评估土地使用变化导致的土壤有机碳(例如在可耕地和草原之间)和草原管理。第二,我们在农业系统的背景下讨论碳的含量,包括作物±草旋转和农场肥料应用。第三,使用草地生态系统模型(PASIM),我们提供了与2批量的温室气体平衡的估计,用于一系列库存率和n个肥料的施用。最后,我们考虑了由于草原的恢复和强化畜牧育种系统的恢复而导致法国的碳固存机会。我们强调了有关农业草原土壤碳库存变化的大小和非线性的主要不确定性,以及从土壤和ch 4的n 2 o排放中的排放。
土壤储存的碳多于大气和植被的加在一起,这是一个令人印象深刻的事实,即在管理生态系统碳时考虑土壤的重要性。土壤不仅储存了大量的碳,而且土壤碳在生态系统中的持续时间比其他碳池更长。与植被碳相比,土壤碳的平均停留时间是数十年来的数十年,而植被碳则在数年到几个世纪的时间范围内循环回到大气中。The slow cycling of soil carbon also means accrual rates of new soil carbon are slow (Schlesinger 1990), while disturbance (e.g., land use change, erosion following biomass removal) can cause large and rapid site-level soil carbon losses (Guo and Gifford 2002, Berhe et al.2018)。因此,保护现有的土壤碳存储是管理碳的基础,因为通过管理逆转土壤碳损失至少需要数十年,有时甚至是不可能的。
摘要:2022年英国(英国)的夏季干旱对其终止可能如何影响和与土壤资源相互作用产生了重大猜测。在科学文献中存在有关土壤和干旱的知识,但尚未汇编过对温带土壤的对土壤特性和功能的更广泛影响的连贯理解。在这里,我们从英国和其他温带国家的研究中汇集了知识,以了解土壤对干旱的反应,重要的是我们的知识差距是什么。首先,我们在英国定义了不同类型的干旱及其频率,并简要概述了干旱在土壤和相关生态系统上所面临的社会影响。我们的重点是“农业和生态系统干旱”,因为这是土壤经历影响农作物和生态系统功能的干燥时期,然后再润湿的时候。研究了水分在土壤中的行为以及有助于其存储和运输的关键过程。讨论了由干旱和重新吹干(即,dr Outch终止)产生的土壤的物理,化学和生物学特性的主要变化,并证明了它们的广泛相互作用。涉及土壤重新润湿的过程,以进行土壤和集水区的土壤反应。最后,考虑了干旱后的土壤恢复,确定了知识差距,并突出了改善理解的领域。
在行星表面的硅酸盐岩石的风化可以从大气中划出CO 2,以最终在行星内部埋葬和长期存储。这个过程被认为是对碳酸盐硅酸盐循环(碳循环)的基本负反馈,以维持地球上的克莱门特气候和潜在的温带系外行星。我们实施热力学,以确定风化速率是表面岩性(岩石类型)的函数。这些速率提供了上限,允许估计调节气候的最大风化速率。该建模表明,在给定岩石而非单个矿物质中矿物组合的风化对于确定行星表面上的风化速率至关重要。通过实施流体传输控制方法,我们进一步模拟了化学动力学和热力学,以确定受地球大陆和海洋壳构造及其上层岩石的启发的三种岩石的风化速率。我们发现,类似大陆壳的岩性的热力学风化速率比海洋壳的岩性特征低约一到两个数量级。我们表明,当CO 2二压压力降低或表面温度升高时,热力学而不是动力学会对风化产生强大的控制。在动力学和热力学上有限的风化状态取决于岩性,而供应限制的风化与岩性无关。我们的结果表明,热力学有限的硅酸盐风化的温度敏感性可能会激发对碳循环的正反馈,在这种情况下,随着表面温度的增加,风化速率降低。
抽象的温带树在冬季需要低温,随后在早春的温暖条件才能使水果呈水果。地中海地区的许多地方都以低且有时是边缘寒意积聚的冬季。评估耕种温带树(包括杏仁,开心果,杏子,甜樱桃和苹果)的历史和未来的农业气候条件,我们在这个重要的生长区域中绘制了冬季寒冷。我们使用现场天气记录(1974-2020)来校准天气生成器,并为历史和将来的情况生成数据。为了扩大我们的分析,我们为整个地中海盆地进行了空间插值。我们通过收集观察到的气候变化对温带果园的影响以及未来的风险以及气候变化产生的未来风险以及对气候变化的影响,从而补充了我们的模拟结果。的结果表明,北非成长地区遭受了严重的寒冷损失,这可能是专家突出的不规则和延迟的布鲁姆的原因。与南欧的同一地区,到2050年,在适度的变暖情况下,可能会损失多达30个寒意。在未来,专家预计会增加早期盛开品种中春季霜的风险,加剧与开花相关的概率和热浪的发生增加。我们的结果提供了可能对温带果园的气候变化影响的证据。专家知识证明了解释模拟结果以及定向气候变化适应策略的作用。我们提出的结果对规划新种植的农民和果园经理以及研究人员和政策制定者制定了使水果果园适应气候变化的影响的战略。
本书包含在泰国泰国学位和温度森林中测量和监测的热带和温度森林中的国际研讨会上提出的24篇论文。座谈会来自来自世界各地40多个国家的240多名科学家参加了研讨会。除了四天的纸张陈述外,还有一次为期一日的实地考察,还有一个连续的海报会议,其中包含35个以上的海报,以及用于识别和衡量生物多样性的软件包的计算机演示。生物多样性是一个巨大的主题,由于热带和温带森林是地球陆地生物多样性中很大一部分的家园,因此很难在单一体积中全面介绍该主题。选择了本书中包含的论文,以尽可能广泛地覆盖一般标题下的关键主题,包括测量和监测生物多样性的原则(8篇论文),遗传多样性(6篇论文),物种和生态系统多样性(5篇论文)和方法(5篇论文)和方法(5篇论文)。i,林木是许多论文的主题,但还包括涉及各种节肢动物,微杆菌,鸟类和蝴蝶的论文,以及许多涉及整个生物多样性范围的论文。我们要感谢许多帮助使这本书和这本书成为可能的人。最后,我们要感谢手稿的评论者:MD。是研讨会的赞助商,泰国皇家森林部,欧洲社区委员会,加拿大国际开发局(包括东盟森林树木种子中心和SADCC树木种子中心网络),加拿大森林服务局,美国森林服务局,美国森林服务局,国际森林研究中心以及国际植物遗传资源研究所。我们还要承认泰国整个组织委员会的贡献,尤其是Cifor女士的协助,在研讨会之前,期间和之后,她的工作,尤其是在为发展方面的科学家安排财务支持方面,并准备手稿出版。K。Alam,S。Appanah,P。Ashton,K。Bawa,K。Boonpragob,W。Brockelman,J。Brouard,J。Brouard,N。Byron,K。Chaisurisri,J。Coles,J。Coles,M。Collins,M。Collins,J。Cornelius,J。Cornelius,C。Cossalter,C。Cossalter,C。C. C. Harris,O。Hendrickson,M。Hossain,M。Ibach,H。Joly,P。Kanowski,M。Kariuki-Larsen,R Leakey,S。Magnussen,E。McKenzie,J。McNeely,J。McNeely,D。Meidinger,D。Meidinger,C。Nair,C。Nair,C。 Ouedraogo,C。
helmholtz极地和海洋研究中心的Alfred-Wegener-Institute,Am Handelshafen,12,27570 Bremerhaven,德国B德国B海洋环境化学与生物学研究所(ICBM),Oldenburg大学,旧金堡大学,Schleusstraße1,26382 Wilhelmshaven,compoly compology of Schleussenstra。 FUENTUENUEVA S/N 1,18071 GRANADA,西班牙d生态与动物生物学系,Vigo大学,校园Lagoas Marcosende S/N,36310西班牙Vigo,E西班牙E生态,环境和植物科学系,斯多克大学,斯德哥尔摩大学,Svante Arrhenius v. ag ag20a,Swedig swedig switde v. ag ag 206 91 specten-swud f。在Freiburg,Fahnenbergplatz,79104 Freiburg I.Br.
西班牙南部和北非有许多生产性的温带水果和坚果树种,具有很高的经济相关性。但是,这些果园受到主要种植季节和冬季的温度升高的威胁。大多数温带树木在叶片掉落的时候进入休眠阶段,然后需要暴露于冷却和热量以恢复生长,花朵,并最终携带果实。冬季温度的变化会导致绽放时机的变化。如果未完全满足农业气候的需求,树木可能会显示不规则或抑制的开花,这可能导致产量降低并损害了水果的质量。为了投射未来的气候变化对西班牙和北非果园的影响,我们用四种温带水果和坚果树种(苹果,杏,杏仁,开心果)的开花数据校准了物候模型的现场,从西班牙南部,摩洛哥和突尼斯的四个地点进行了校准,覆盖了49个品种。我们预测了目前和未来的条件,我们预测了开花日期和潜在的绽放失败率(如果不符合农民气候要求)。我们预测了两个时期的布鲁姆日期和潜在的绽放失败率(2035 - 2065,2070 - 2100),四个气候变化情景(SSP126,SSP245,SSP370,SSP370,SSP585),以及全球循环模型的集合(14-18,取决于场景)。此外,我们预计在短期(2035 - 2065年)中,西班牙南部的几种杏品种的未满足的热需求速率增加了,在长期以来(2070 - 2100年)下,突尼斯和西班牙南部西班牙的开心果和杏仁速度在有趣的气候场景下。我们在将来和现在的条件下比较了预计的花朵日期时观察到了两个主要模式:摩洛哥杏仁的不变绽放时间,在突尼斯,杏仁,杏仁,杏仁,西班牙南部的杏仁和杏仁的开花中适度到强烈的延迟,以及摩洛哥的苹果。我们观察到杏和杏仁的物候转移和开花衰竭率在品种中存在显着差异,这表明品种对变暖冬季的韧性有很大差异。
Erin Hassett 1,Gil Bohrer 2,Lauren Kinsman-Costello 3,Yvette Onyango 2,Talia Pope 3,Chelsea 3 Smith 3,Justine Missik 2,Erin Eberhard 3,Jorge Villa 4,Jorge Villa 4,Steven E. McMurray 5,Tim Morin 1,Tim Morin 1 4 5 >