气候变化对森林生长和繁殖的影响得到了广泛报道,但很少证明其相互作用的间接影响。在对欧洲山毛榉的43- y研究中,夏季温度升高导致种子产量更高(桅杆),从而增加了总生殖投资。这种增加的生殖工作耗尽了存储的资源,即使没有增加干旱压力,也会降低年增长率28%。减少的增长进一步降低了未来的生殖潜力,从而产生了负反馈循环。一场生长下降并减少可行种子产量的“完美风暴”威胁着欧洲最广泛的森林树的可持续性。我们揭示了一种间接的机制,气候变化危害了森林,强调了在评估物种对气候变化的敏感性时人口过程之间相互作用的重要性。
然后,本文将使用多个阶段的涡轮机提出一个创新的冷冻冷却概念,该概念基于相同的工业涡轮增压器技术,可以在20-30 Kelvin温度范围内提供约1 kW的冷却能力(或在65 K时为5-6 kW),足以冷却10 mW的风力涡轮机。将来的其他版本可能在4 K处运行。它基于Air Liquide在成熟的反向涡轮增压涡轮增压 - 布雷顿制冷技术方面的丰富经验(从国际空间站,HTS地面应用于LNG船舶运营商)和大型科学工具(Cern-LHC,Iter,Iter,slac,slac等)。
摘要:在许多新兴技术中,电池电动汽车(BEV)已成为对严格排放法规的突出和高度支持的解决方案。尽管受欢迎程度越来越大,但可能会危害其进一步传播的主要挑战是缺乏充电基础设施,电池寿命降级以及实际和有望的全电动驾驶范围之间的差异。本文的主要重点是制定综合能量和热舒适管理(IETM)策略。此策略可最佳地管理供暖,通风和空调(HVAC)单元所需的电能,这是电池负荷上最受影响的辅助设备,以最大程度地减少电池寿命在任何特定的驱动循环中的降解,同时确保实际的机舱温度徘徊在允许的公寓内悬停在参考机舱温度中允许的公寓温度限制内,并且驾驶员的驾驶员启动了驱动器,并始终启动。这项工作结合了健康(SOH)估计模型,高保真舱室热力学模型以及HVAC模型的市售BEV的前向示例模拟模型,以展示提出的增强电池寿命的IETM IETM策略的效果和功效。IETM的瞬时优化问题是通过利用目标函数凸度的黄金搜索方法来解决的。在不同的驾驶场景下进行的模拟结果表明,提议的物品控制器带来的改进可以将电池健康降解最大化高达4.5%,能源消耗量最高2.8%,同时将机舱温度偏差保持在允许的范围内,从而在允许的限制范围内与参考温度保持一致。
经验公式C 48 H 24 N 3 O 16 U 2配方重量1374.76温度/K 100晶体系统单斜空间群C2/C A/Å17.8388(13)B/Å56.143(4)C/Å18.6016(14)(14)(14)α/°90α/°90β/°116.66.66.66.66.02(3) 16734(2) Z 8 ρcalcg/cm 3 1.091 μ/mm -1 8.365 F(000) 5160.0 Reflections collected 155999 Independent reflections 14743 [R int = 0.0703, R sigma = 0.0381] Data/restraints/parameters 14743/24/625 Goodness-of-fit on F2 1.041 Final R索引[i> =2σ(i)] r 1 = 0.0407,WR 2 = 0.1138最终R索引[所有数据] R 1 = 0.0465,WR 2 = 0.1168
在XXI世纪初发现石墨烯并研究了其有希望的性质[1] [1]逐渐出现,并且仍然相关[2,3]对研究二维(2D)材料,尤其是分层金属辣椒素[4,5]的兴趣。层状金属chalco-天鹅是有前途的材料,可用于微电子,光子学和光伏的材料,因为它们具有半导体,金属,介电特性和拓扑绝缘剂的性能[6]。金属硫化剂的分子层的接近1 nm厚度以及它们之间存在弱的范德华键的存在提供了高机械柔韧性和对变形的抗性,从而产生了在柔性电子中的使用潜力[7,8]。由于物理特性的多样性,可以将分层的金属硫化剂用于各种应用,例如。 g。,MOS 2,BI 2 TE 3和2 SE 3中具有紫外线的高电磁发射吸附系数至接近红外范围[9]。结果,基于金属辣椒剂的范德华异质结构具有在功能设备的设计中使用其电子和光电特性的巨大潜力[10]。在2 SE 3中层层层次,最杰出的代表之一是在其基础上创建太阳能照片,光电探测器和存储设备的2 se 3 [6,11,12]。例如,最近在2 SE 3中至少有八个阶段已经在实验中找到并在理论上进行了预测,而不是许多金属辣椒剂,尤其是在2 SE 3中,其特征是存在具有相同化学计量的多态性修饰(相),但具有不同的结构和电子特性。
研究结构缺陷及其对光学材料光学性质的影响是至关重要的,因为在制备用于显示应用的材料时会涉及不同的方法。镧系离子掺杂是一种简单的结构探测策略,它有助于识别结构缺陷。使用 Pechini (C 2 SP) 和水热法 (C 2 SH) 制备纯和铽 (Tb 3 +) 掺杂的 Ca 2 SiO 4 (C 2 S) 粒子。从 SEM 图像中可以看出,Tb 3 + 掺杂的 C 2 SP 粒子比 C 2 SH 粒子更高度聚集。TEM 研究证实,在 180 和 200 C 的高水热温度下制备的 C 2 SH (C 2 S:180H 和 C 2 S:200H) 的粒度减小。 Tb 3 + 掺杂的 C 2 S:180H 和 C 2 S:200H 发生荧光发射猝灭。与 Tb 3 + 掺杂的 C 2 SP、C 2 S:180H 和 C 2 S:200H 相比,在 140 C 下制备的 Tb 3 + 掺杂的 C 2 SH 的发射强度较高。在 X 射线光电子能谱 (XPS) 价带谱中,实验评估了与纯 C 2 SP 和 C 2 S:180H 四面体硅酸盐的上能级价带谱相关的 O2p 轨道的变化。由于硅酸盐单元的扭曲导致对称性降低,从而猝灭了发射,这已由 XPS 价带谱和 Tb 3 + 发射线证实。这项研究表明,与水热法相比,Pechini 法更适合制备 Tb 3 + 掺杂的 C 2 S 荧光粉,特别是在高温下用于固态显示器和闪烁体应用。© 2020 作者。由 Elsevier BV 代表河内越南国立大学提供出版服务。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
摘要:近年来,在环境问题和对可再生能源的研究中,光伏(PV)系统纳入全球能源景观。对温度和太阳辐照度的准确预测对于优化PV系统的性能和网格整合至关重要。机器学习(ML)已成为提高这些预测准确性的有效工具。这项全面的综述探讨了基于ML的温度和太阳辐照度的PV系统的先驱技术和方法。本文介绍了各种算法和通常用于温度和太阳辐射预测的技术之间的比较研究。这些包括回归模型,例如决策树,随机森林,XGBOOST和支持向量机(SVM)。本文的开头强调了准确的天气预报对PV系统运行以及与传统气象模型相关的挑战的重要性。接下来,探索了机器学习的基本概念,突出了提高准确性的好处,以估算电网集成的PV发电。
图解扩展是处理相关电子系统的中心工具。在热平衡下,它们最自然地定义了Matsubara形式主义。但是,从Matsubara计算中提取任何动态响应函数最终需要从虚构到实频域到实频域的错误分析延续。最近提出了[物理学。修订版b 99,035120(2019)],可以使用符号代数算法分析进行任何相互作用膨胀图的内部Matsubara总结。总结的结果是复杂频率而不是Matsubara频率的分析函数。在这里,我们应用了此原理并开发了一种示意的蒙特卡洛技术,该技术直接在实际频率轴上产生。我们介绍了在非平凡参数方面的掺杂32x32环状方晶格哈伯德模型的自我能量σ(ω)的结果,其中pseudogap的特征似乎靠近antinode。我们讨论了在实频轴上的扰动序列的行为,尤其表明,在使用截短的扰动系列上使用最大熵方法时,必须非常小心。在分析延续很困难的情况下,我们的方法对将来的应用具有巨大的希望,而中阶扰动理论可能会融合结果。
城市热岛(UHIS)已经研究了100多年(Stewart,2019年)。根据背景农村温度和峰值城市温度之间的变化,它们定义为39(Oke,40 1973)。开创性的工作从十九世纪初到二十世纪初期,强调了城市对温度的41影响(霍华德,1833年;雷诺,1868年)。1920年至1940年42年的创新方法有助于量化和映射这种效果(Schmidt,1927)和实验研究43从1950年到1980年,对此有了更好的了解(Sundborg,1951年)。本研究源于44个通过移动45运动来衡量城市温度的创新方法所做的工作。它评估了城市环境46中土地表面特性对温度的影响以及由表面特性近似引起的相关不确定性。47