fi g u r e 4通过大量浮游物样品的DNA分析检测到的浮游组合中的空间模式。从16S通用(a)和软体动物(b)测定的非金属多维缩放图显示了采样位点和摩ri座北部和南部的OTU组合(分别为k = 0.11&0.10)之间的OTU组合,均分别为k = 3&p≤.001)。样品与抽样时的平均海面温度的关系由温度梯度指示。簇表示每个位置的样品,彩色线的连接表示每个位置的质心。
图7:实验设置。为了改变温度,我们将使用含有液氮或氦气的血管。在容器中,由于传热机制,温度梯度沿垂直方向形成(图7)。温度t(x)取决于距氦表面的距离x。确切的温度曲线由几个因素确定,包括氦气量,容器的几何形状及其绝缘特性。样品(Cu,ta uds si)安装在由COP-PEN制成的样品支架(Probenhalter)上,该样品拧到杆上(Tauchrohr)并被圆柱形屏蔽(Schutzrohr)覆盖(图9)。另外,将铂和碳电阻添加到样品持有器中,该量将用于测量温度。
地热春季生态系统作为极端栖息地,对其微核群落施加了巨大的环境压力。然而,关于不同栖息地和温度梯度的地热生态系统中微核群落稳定性的现有研究仍然受到限制。在这项研究中,我们将高通量18S rDNA测序与环境因素分析结合使用,以研究泥沙中泥沙中微神经群落和水样在西部层中不同温度梯度的36个地热弹簧中的微神经群落环境变化的共发生模式,组装机制以及对环境变化的反应。结果表明,随着温度的升高,沉积物中微核群落的网络稳定性显着改善,而水社区的稳定性下降。沉积物和水中的微核群落的组装机制主要是由随机过程中的不主要过程驱动的。纬度和经度是影响沉积物社区组成变化的关键因素,而水温和电导率是影响水社区组成的主要环境因素。此外,地热群落网络的稳定性与其对外部干扰的反应密切相关:在相对稳定的环境中,沉积物群落表现出更高的抗扰性抵抗力,而受环境变化(例如水流和降水)影响的水社区表现出更大的动态变异性。这些发现不仅增强了我们对地热弹簧中微核群落的生态适应性的理解,而且还提供了对极端环境中微生物如何应对外部骚扰的宝贵见解。这对于理解微核社区如何在高度动态和压力的环境条件下保持生态稳定尤其重要。
在宽带隙器件获得商业认可之前,必须证明其可靠性,而且对可靠性的要求也更高。在器件和封装层面不断追求更高的功率密度,会导致整个封装的温度升高和温度梯度增大。新的应用领域通常意味着更恶劣的环境条件。例如,在汽车混合动力牵引系统中,内燃机的冷却液温度可能高达 120°C。为了提供足够的裕度,这意味着最高结温 (T JMAX ) 必须从 150°C 提高到 175°C [4]。在飞机等安全关键应用中,已经提出了零缺陷概念来满足更严格的可靠性要求。
热电设备(TEDS)是固态能量转换器,在经受外部温度梯度时会产生电力,或者在配备电流时产生温度差异并用作固态冷却器。TEDS将热量转化为电力的能力,反之亦然,在过去二十年中开发了用于废热恢复和固态冷却的高效率设备的巨大研究兴趣。1 - 12个世界能源消耗的三分之二仍然消散,因为浪费了这种浪费的能量,而这种浪费的能量仅在美国就可以产生15吨的电力。13同时,冷却和热管理对于建筑物和车辆的人类舒适性以及电子和医疗设备的可靠操作和寿命至关重要。固态
参与该项目的实验室列于表 1 中。如表 2 所示,许多实验室在较大的温控室中使用不同类型的子室来改善温度控制、实现和/或改善湿度控制并尽量减少辐射热传递的影响,因为室壁的温度略有不同。这些子室由不锈钢、铝、铜或木材制成,其容积从几分升到 1 升不等。GUM 和 MIRS/UL-FE/LMK 的子室配有风扇,以保持子室和其温控环境之间的空气循环。由于流动方向向外,风扇散发的热量不会引起子室内的温度梯度。值得注意的是,大多数子室内的风速明显小于没有子室的较大温控室。
摘要:本研究的主要目的是通过对钛酸锂离子电池内部产热的实验测量来说明钛酸锂离子电池组内的冷却机制。选择介电水/乙二醇(50/50)、空气和介电矿物油用于钛酸锂离子电池组的冷却。考虑了不同的流动配置来研究它们的热效应。在钛酸锂离子电池组中的锂离子电池单元中,采用了与时间相关的产热量,作为体积热源。假设电池组内的锂离子电池在所有模拟中具有相同的初始温度条件。通过 ANSYS 模拟锂离子电池组,以确定冷却系统和锂离子电池的温度梯度。模拟结果表明,流动布置和流体冷却剂类型会显著影响锂离子电池组的温度分布。