出于经济原因,机械用户的当前趋势是延长其旋转机械的使用寿命并提高工厂的可用性和可靠性。正在实施工厂寿命延长计划,而不是更换 20 到 30 年的机器,以使机器运行到其原始使用寿命甚至更长。由于机器的正常运行时间和可靠性对于发电站运营商来说是重中之重,因此安装有效的状态监测系统是一个非常重要的问题。满足峰值电力需求的抽水蓄能电站对发电机转子和定子施加了严重的热应力和机械应力。操作实践涉及每天两次或两次以上启动和关闭机器,这可能导致过早老化和与周期相关的定子绕组因材料中的高温度梯度而劣化。转子变形或转子径向偏差引起的振动问题促使许多大型发电机操作员安装一种有效的方法来测量静态和动态气隙。动态气隙监测是在水力发电机运行时测量转子到定子距离的过程。
电子束-粉末床熔合 (EB-PBF) 技术中通常沿构建方向形成柱状晶结构,导致物理和机械性能各向异性。本研究模拟了铸件凝固条件,并在 EB-PBF 中促进了原位再结晶,以促进 718 合金中柱状晶到等轴晶结构转变。这是通过独特的线性熔化策略以及 EB-PBF 中特定的工艺参数选择来实现的。研究发现,使用线序号 (LON) 函数的定点熔化会影响冷却速度和温度梯度,从而控制晶粒形貌和织构。高 LON 会产生大的等轴晶粒区和随机织构,而固定的 LON 和高面能量密度会产生强织构。研究了转变过程中形成裂纹和收缩缺陷的主要驱动力。固定面能量密度下的高 LON 减少了平均总收缩缺陷和裂纹长度。硬度在转变过程中降低,这与 γ ′′ 沉淀物尺寸的减小有关。
摘要 大多数发电厂通过将机械运动转换为交流电 (AC) 来发电。光伏太阳能电池板将光的电磁通量转换为直流电 (DC)。一般来说,电能可以从环境中的通量或环境本身的变化中获取。人们可以从机械、化学、热、电磁(光)或其他物理通量,或从温度、化学成分或物理场的变化(重力、磁、电、机械应力和应变等)中产生电能。通量的例子有空气和水的机械运动、表面波和潮汐、由于温度梯度引起的热通量、太阳光和化学通量(例如大气中的湿度传播或由于淡水河流入海洋的河口的盐度梯度导致的水中盐的扩散)。尽管人们每天都会受到环境变化的影响,包括空气温度、压力、湿度和成分的变化、重力场的潮汐变化以及地磁场和电场的周期性变化,但环境变化在能源生产中却没有得到充分利用。利用环境变化和通量生产无需燃料的电力需要耐用的基础设施,以便经济高效地利用“半永久”能源。
热电冷却 (TEC) 因其组件尺寸小、成本低和环保而在许多应用中得到实施。这种组件在施加直流电流时会产生温度梯度,已在许多评论中进行了讨论。本文讨论了许多与 TEC 相关的问题。首先,介绍了影响该组件的因素,例如性能系数、用途、影响因素和冷却能力。其次,介绍了性能系数,这是显示 TEC 设备如何有效工作的最重要的参数。TEC 设备可靠且不需要机械运动部件。它们体积小巧且环保。第三,描述了 TEC 结构及其众多热力学方程。还简要讨论了 TEC 设备的特性及其应用。最后,研究了 TEC 设备作为发电设备或热电发电机 (TEG) 的用途,尽管 TEC 和 TEG 完全矛盾。施加温度时,TEG 会产生电流。这项研究的结论是,TEC 是一种良好且可靠的设备,可以应用于许多应用。此外,TEC在电子领域具有很好的应用潜力,因为它可以通过输入电压和电流轻松控制。
能够监视锂离子电池(LIB)的热行为的能力,是选择性性能并确保安全操作的必要前提。但是,传统的点测量(热电偶)在准确表征LIB行为方面面临着挑战,尤其是定义热点以及热梯度的大小和方向。为了解决这些问题,已经采用了基于光频域反射计(OFDR)分布式 - 光纤维传感器来量化圆柱形21700 LIB内的热量产生。实现了光学传感器内的3 mm空间分辨率。光纤已在细胞表面周围缠绕,以超过1300个独特的测量位置;分布在圆周周围,沿Lib轴向分布。分布式测量结果表明,在1.5C放电期间,最大热差可以达到8.37℃,而点状传感器的热差为4.31℃。虽然沿细胞轴向长度的温度梯度首次被充分理解,但该研究首次量化了沿细胞周长的温度变化。全球热图像突出显示热量产生是在正电流标签周围积累的,这意味着在传统表征实验和电池管理系统(BMS)内定义传感器的位置时,需要对内部LIB结构的基本知识。
高性能芯片的热管理复杂性增加,因为热负荷随空间和时间变化,而液体冷却系统通常是为最严格的静态条件设计的。一些研究开发了传热增强技术来提高液冷散热器的冷却能力,但由于在通道内增加了元件,泵送功率永久增加。本文提出了一种液体冷却自适应散热器,它可以有效地调整其热提取能力的分布以适应时间相关和非均匀的热负荷场景。本文介绍了具有双晶金属/SMA 翅片的中尺度冷却装置的数值设计、SMA 翅片的制造和训练程序的定义以达到所需的行为以及实验评估。通过数值和实验证明了自适应翅片局部增强传热的能力。结果表明,与普通通道相比,自适应翅片可以将温度均匀性提高 63%。使用双晶金属/SMA 翅片样品可降低热阻,尽管热通量增加,但表面最大温度梯度几乎保持不变。在部分负载间隔对总体运行周期有重大影响的应用中,可最大程度地节省能源。
激光增材制造,通常称为激光3D打印(L3DP),在近净成形制造以及修复由单晶或定向凝固高γ′含量(> 60 %)镍基高温合金组成的燃气涡轮发动机部件方面具有巨大潜力[1]。根据送粉策略,L3DP可分为直接能量沉积(DED)或粉末床熔合(PBF)。由于热源集中且热输入减少,在DED和PBF过程中都会出现与构建方向平行的陡峭温度梯度,从而有利于外延晶体沿基板金属取向生长。同时,在DED和PBF工艺的快速凝固中,可以生成长度从纳米到亚毫米的异质微观结构[2-5]。这些是通过传统制造方法无法实现的。 L3DP 固有的高冷却速度严重抑制了二次枝晶臂的生长,因此在缺乏晶体取向知识的情况下很难区分胞状结构和枝晶 [6]。因此,术语“胞状结构”通常用于表示 3D 打印合金中的胞状/枝晶结构。细胞结构
摘要:随着能源部门脱碳的努力,电力需求不断增长,其中大部分将由碳中和未来的可再生能源提供。为了平衡大多数可再生能源固有的可变性,需要某种形式的能源储存。在本文中,简要回顾了当前的系统,特别关注卡诺电池,其运行特性、长寿命和低环境足迹使其在日常能源储存方面具有竞争力。开发了一个瞬态模型来模拟卡诺电池的完整运行,该电池由蒸汽压缩热泵和有机朗肯循环以及显热储存组成。确定了关键性能参数,并通过平衡 25 种存储温度范围和热交换器夹点配置的成本和性能进行了帕累托优化。结论是,更宽的存储范围和更高的夹点可以降低成本,因为它们会减小水箱和热交换器的尺寸,并降低效率,因为会为热泵和热机产生不利的温度梯度。确定了一个帕累托前沿,它由 10 种配置组成,这些配置可以优化一个标准,或者平衡两个或多个标准,并得出关于每种配置适用性的结论。
插头或插孔端接 - AC 型 AC 型热电偶配备插头或插孔端接,可快速连接或断开。除了节省时间之外,这种热电偶款式还具有易于使用的优势,即使没有经验的人员也可以轻松使用。此外,热电偶按照 ASTM E 230 规范进行颜色编码,因此您可以轻松确定校准。除 ASTM E 230 R 型和 S 型外,所有 AC 型热电偶的引脚和触点都采用与热电偶相同的合金,因此准确度更高。这种技术可消除由于连接器上的温度梯度而导致的误差。R 型和 S 型连接器采用补偿合金。特点 • 插头和插孔易于连接和断开,为您节省时间 • ASTM 颜色编码连接器可快速识别热电偶校准 • 微型连接器,可提供直径最大 0.125 英寸(3.0 毫米)的热电偶,可用于空间狭小的位置。微型插头允许快速连接到便携式仪器 • 匹配的热电偶合金提供更高的精度 • 适配器确保连接器牢固地安装到护套上,防止连接器转动或扭曲
许多机器会产生大量废热,这些废热可用作能量收集物联网设备的稳定而充足的能源。这种设备的能量转换子系统的主要组件是放置在热源和散热器之间的热电发电机 (TEG)。一旦 TEG 达到稳定状态,其上产生的电动势仅取决于温度梯度。本文旨在提出一种利用工作机器的另一个副产品——振动来提高发电量的新方法。我们的想法是在 TEG 和散热器之间添加具有可变导热性的传热介质;最好是具有高导热系数和气隙的流体。随机运动会导致流体飞溅,从而导致在 TEG 和散热器之间形成短暂的热桥。考虑到 TEG 的热化是其发电的主要限制因素,与热源的短暂接触会大大增加其输出功率。类似的方法可以应用于人或动物持有的任何能量收集可穿戴设备,因为生物在日常活动中会传递体热和随机运动。我们测量了随机移动设备在各种角度下的性能。与其他设置相比,随机移动容器的功率输出明显更高。最大改进为 49%。平均改进为 10%,中位数为 17%。