我的实验室研究树木和其他植物如何应对环境压力,包括全球变化因素,如干旱、气温升高和城市化。我们的工作在野外、温室中进行,有时也在实验室中进行。我们有几个正在进行的项目,学生可能有兴趣与我们一起合作:柳枝稷解剖学——柳枝稷是一种潜在的未来生物燃料来源,但转化为燃料的效率取决于细胞特性和化学成分。我们有兴趣评估在水分胁迫条件下生长的植物中木质素成分减少的植物解剖学可能存在的差异。城市森林状况和组成——城市植被提供许多生态系统服务,但城市条件(气温升高,有时水分减少)会给植物带来压力,尤其是在俄克拉荷马州。我们对俄克拉荷马城/诺曼地区公共树木的生长和存活情况进行了长期监测。橡树遗传多样性——橡树经常与其他物种杂交,可能会引入新的特性,这些特性可能对气候变化有用。我们利用来自不同温度梯度的栎树幼苗建立了 3 个“常见”的花园环境,在其中我们可以研究抗旱性等适应性特征的差异。
客机客舱是一个狭窄而封闭的空间,通常人口密度很高。由于现在的长飞行时间,热舒适度成为设计阶段需要考虑的重要因素。波音、空客等飞机制造商为改善热舒适度付出了相当大的努力(Pang et al. 2014)。有几种方法可以用来研究这类区域的热舒适度。在一些研究中,使用了著名的预测平均投票 (PMV) 模型(Fanger 1970),但也有一些研究进行了现场热舒适度调查。也可以采用数值模拟和计算流体动力学 (CFD) 来预测局部皮肤温度并计算热舒适度。Cui et al.(2014)在飞机客舱内进行了现场测量,以绘制空气温度、相对湿度、黑球温度和空气速度等影响参数。还对乘客进行了问卷调查。他们得出的结论是,乘客对热环境并不满意,因为他们感觉很热。热舒适度图表现出不均匀性;中舱的温度始终较高。但是,据报道,垂直温度梯度以及空气速度都在舒适区内。在另一项研究中,调查了飞机客舱乘客的局部和整体热舒适度(Park 等人,2011 年)。得出的结论是,模拟舱内的整体热感觉
摘要:我们使用多个观测数据集和一个埃迪渗透的全球海洋模型来建造1950 - 2020年期间的北大西洋热预算(26 8 - 67 8 N)。在多年代时间尺度上,海洋热传输收敛控制北大西洋大多数地区的海洋热含量(OHC)趋势,对扩散过程几乎没有作用。在北大西洋亚北大西洋(45 8 - 67 8 N)中,热传输收敛是通过地质的术语来解释的,而年龄型的流质在亚热带中产生了显着的贡献(26 8-45 8 N)。在所有区域的地质贡献都由时间均值温度梯度的异常对流主导,尽管其他过程具有显着的贡献,尤其是在亚热带中。异常地质电流的时间尺度和空间分布与亚层循环中向西/西北传播的盆地尺度热rossby波的简单模型一致,并且在区域OHC中的多摄氏度变化通过定期逐渐逐渐逐渐逐渐逐渐逐渐逐渐逐渐逐渐渐变来解释。全球海洋模型模拟表明,大西洋子午线倾覆循环中的多年龄变化与海洋热传输收敛同步,与传播的罗斯比波(Rossby Wave)的调节一致。
基于 SMO 薄膜的电导式气体传感器必须加热到高达 550 ◦ C 的温度,才能在 SMO 薄膜表面启动分子吸附过程。通常使用铂作为微加热器材料。这些设备的长期可靠性主要与微机电系统 (MEMS) 结构的机械稳定性有关,该结构用于将微加热器悬浮并与其他集成组件(例如模拟和数字电路)热隔离。然而,先前的研究表明,电迁移和热迁移现象可能会加剧铂微加热器中的应力积累并导致其最终失效。在本文中,我们提出了一种方法来量化空位传输对电迁移和热迁移现象下两种新型微加热器设计中应力积累的影响。第一个设计旨在提高温度均匀性,第二个设计旨在微加热器阵列操作,利用高温度梯度同时在不同的传感器位置提供多个温度。我们的分析表明,热迁移力远高于电迁移力,这意味着这些器件中的高热梯度对空位传输的贡献远大于电子风引起的原子传输。此外,我们计算出,在典型操作条件下,我们提出的设计具有很强的抗空位迁移失效能力,平均失效时间约为 10 15 秒。
摘要:气候模型代表热带风暴轨迹的能力对于提供有用的预测至关重要。在先前的工作中,发现北半球的热带风暴轨迹的表示已从耦合模型比较项目(CMIP)的第5阶段改善。在这里,我们通过将仅大气模拟(AMIP6)与历史库型模拟(CMIP6)进行了对比,从而研究了CMIP第6阶段模型中的剩余和持久偏差。对AMIP6和CMIP6模拟的比较表明,冬季跨北部Paci -fean的耦合模拟中海面温度(SST)的偏见改变了大气温度梯度,这与风暴轨迹的赤道偏置有关。在北大西洋中,旋风在耦合的模拟中没有足够的杆子传播,该模拟部分是由格陵兰岛南部的冷SST驱动的,从而减少了潜在的热量。在夏季,中亚和藏族高原的过度加热会降低当地的斜压性,导致更少的气旋形成并从中国东部传播到耦合和大气中的模拟物中。当规定SST时,耦合模型中描述的几种偏差大大减少。例如,北极风暴轨迹的赤道偏置显着减少。然而,在CMIP6和AMIP6中,其他偏见都显而易见(例如,夏季东亚的轨道密度密度和循环发生的持续降低)与其他过程有关(例如,土地表面温度)。
为了实现高热能能量转换效率,希望在大温度梯度上操作热电发电机设备,并最大程度地提高用于构建设备的材料的热电性能。但是,没有单个热电材料适合在非常宽的温度(〜300-1000k)中使用。因此,必须在其具有最佳性能的每个温度范围内使用不同的材料。这可以通过两种方式实现:1)多阶段热电发生器,每个阶段在固定温度差上运行,并且是电隔离的,但与其他阶段进行热接触2)分段的发电机,其中P和N-Legs形成了由不同片段组成的不同片段。在较早的出版物中引入了将喷气推进实验室开发的新的热电材料整合到分段热电Unicouple中的概念。这种新的Unicouple预计将在300-973 K的温度差上运行,并将根据最先进的热电材料和新颖的P-Type Zn 4 SB 3,P-Type 4 SB 12-基于4 SB 12的合金和N型cosb 3-by-bys alloys的组合,将使用新颖的分段腿。预计该新的单分型将预计转化效率约为15%。我们在本文中介绍了该Unicouple制造的最新实验结果,包括P-Legs,N腿和P-Leg与N-Leg互连的不同段之间的键合研究。
火箭发动机的再生冷却结构承受着极大的载荷。载荷是由热燃烧气体(对于 CH4/OX 约为 3500 K)和冷冷却通道流(对于 LCH4 约为 100 K)相互作用引起的,这导致结构中出现大的温度梯度和高温(对于铜合金最高可达 1000 K 左右),同时两种流体之间的压差也很大。本研究旨在更好地了解三个主要组成部分的物理行为:结构、热气体和冷却剂流以及它们之间的相互作用,特别是结构的寿命。自 1970 年代以来,已经进行了一些燃烧室结构的寿命实验。Quentmeyer 研究了 GH LOX 2/ 燃烧室的 21 个圆柱形 LH 2 冷却测试段的低周热疲劳 [1]。在微型燃烧室内安装了一个水冷中心体,以减少燃料消耗并形成火箭发动机的燃烧、音速喉部和膨胀区域。研究了三种不同的材料。热电偶被放置在冷却通道肋条和冷却剂的入口和出口歧管中。测试是在 41.4 bar 的腔室压力和 6.0 的混合比(氧气与燃料之比)下进行的。喉部区域的热通量达到 54 MW/m 2 。循环重复测试,直到通过感测冷却剂通道泄漏检测到燃烧室故障。没有定量研究热气壁的变形。单个冷却剂质量
T. A. Chowdhury *,R.B。Arif,H。Israq,N。Sharmili,R。S. Shuvo电气与电子工程系,孟加拉国达卡Ahsanullah科学技术大学。太阳能电池电容模拟器(SCAPS-1D)已用于模拟,设计和分析Mose 2,这是一种有吸引力的过渡金属二甲藻元化物(TMDC)材料,基于基于的杂项结构太阳能电池,将其用作用于溶胶电池中常规吸收层的潜在替代方法。这项工作还着重于寻找最佳的吸收剂,缓冲层的厚度以及工作温度对太阳能电池性能的影响,并可能替代有毒的CDS缓冲层。已经获得了Mose 2吸收层的最佳厚度为1 µm,缓冲层约为0.04 µm。用基于CD的缓冲层太阳能电池获得的效率为20.21%。在不同的缓冲层中,例如在2 s 3,ZnO,Znos和Znse中,基于Mose 2的太阳能电池获得的最高效率为20.58%,ZnO缓冲层层为20.58%。基于ZnO缓冲液的太阳能电池的温度梯度为-0.355%/K,而基于CDS缓冲液的太阳能电池为-0.347%/k。这项工作的发现提供了重要的指导,以制造具有无毒ZnO作为潜在缓冲层的高效Mose 2薄膜太阳能电池。2023年11月29日收到;公认的2024年2月15日)关键字:Mose 2,Scaps-1d,太阳能电池,缓冲层,温度,效率
定向能量沉积是一种 3D 打印方法,它使用聚焦能量源(例如等离子弧、激光或电子束)来熔化材料,然后通过喷嘴同时沉积。与其他增材制造工艺一样,该技术用于向现有组件添加材料、进行维修或制造新部件。直接能量沉积增材制造技术已引起业界的广泛关注,用于制造/维修在用组件。然而,该过程经历了复杂的熔化和凝固动力学,对有效控制晶粒结构提出了挑战,从而导致潜在的结构故障。这项研究旨在调查使用高强度超声波控制凝固过程和扩大系统规模以制造大型组件的潜力。从可行性研究中可以看出,超声波可以帮助细化晶粒结构,还可以减少孔隙率等异常。在可行性研究中,考虑了一系列频率和功率配置,以简化系统的扩大。根据所研究的超声波配置,最终确定在放大生产中使用 40 kHz 60 W 配置。还注意到,由于凝固过程中的成分过冷降低了熔池主体的温度梯度,因此超声波辅助增材制造中的热裂纹减少了。此外,还注意到晶粒取向垂直于振动方向,这有可能用于根据需要控制晶粒取向。这一新发现为开发超声波辅助增材制造工艺提供了新的应用。
采用Nb含量为25 wt%的混合粉末,通过选择性激光熔化(SLM)原位制备了一种具有定制微观结构、增强力学性能和生物相容性的钛铌(Ti-Nb)合金。研究了激光能量密度从70 J/mm 3 到110 J/mm 3 对SLM打印Ti-25Nb合金的相变、微观结构和力学性能的影响。结果表明,110 J/mm 3 的能量密度可使合金的相对密度最高且元素分布均匀。通过X射线衍射和透射电子显微镜鉴定了具有[023]β//[-12-16]α'取向关系的α'和β相,它们的比例主要取决于激光能量密度。随着能量密度的增加,由于冷却速度降低、温度梯度增大,Ti-25Nb合金的组织由针状晶粒变为粗化的板条状晶粒,再变为板条状晶粒+胞状亚晶粒。打印Ti-25Nb合金的屈服强度和显微硬度随能量密度从70 J/mm 3 增加到100 J/mm 3 而降低,在110 J/mm 3 时又升至最高值645 MPa和264 HV。力学性能的这种变化取决于α'相的粗化和β(Ti,Nb)固溶体的形成。此外,与纯Ti相比,SLM打印的Ti-25Nb合金既表现出优异的体外磷灰石形成能力,又表现出更好的细胞扩散和增殖能力。