在稀土掺杂晶体中产生一个狭窄的光谱孔的可能性打开了通往多种应用的门户,其中一种是实现超强激光器的实现。这是通过将预先稳定的激光锁定到狭窄孔中来实现的,因此先决条件是消除光谱孔的频率波动。这种波动的一个潜在来源可能是由温度不稳定性引起的。但是,当晶体被以与晶体相同温度的缓冲气体包围时,可以使用温度引起的压力变化的影响来抵消温度波动的直接效应。对于特定压力,确实可以识别光谱孔谐振频率与一阶热波动无关的温度。在这里,我们在周围缓冲气体的压力的不同值的情况下测量频率转移是温度的函数,并确定光谱孔在很大程度上对温度不敏感的“魔术”环境。
大多数当代死亡率模型都依赖于推断趋势或过去的事件。但是,气候变化将受到人口动态的影响,尤其是温度对死亡率的影响。 在本文中,我们引入了一种新型方法,以使用多人口死亡率模型对预计死亡率进行影响。 这种方法将随机死亡率模型与气候流行病学模型结合在一起,预测由于每日温度波动而导致的死亡率变化,无论是过度还是不足。 这种方法的重要性在于它通过利用气候模型的温度预测来破坏死亡率预测的能力,并评估这种未指定的危险因素对常规死亡率模型的影响。 我们使用性别分层的法国数据说明了这种提出的死亡率模型,重点是过去的温度和死亡率。 利用各种IPCC场景中的气候模型预测,我们研究了与温度有关的预期寿命的收益和损失以及极端热浪引起的额外死亡率,并通过在预测间隔中评估这一新的风险因素来量化它们。 此外,我们分析了法国大都会的地理差异。但是,气候变化将受到人口动态的影响,尤其是温度对死亡率的影响。在本文中,我们引入了一种新型方法,以使用多人口死亡率模型对预计死亡率进行影响。这种方法将随机死亡率模型与气候流行病学模型结合在一起,预测由于每日温度波动而导致的死亡率变化,无论是过度还是不足。这种方法的重要性在于它通过利用气候模型的温度预测来破坏死亡率预测的能力,并评估这种未指定的危险因素对常规死亡率模型的影响。我们使用性别分层的法国数据说明了这种提出的死亡率模型,重点是过去的温度和死亡率。利用各种IPCC场景中的气候模型预测,我们研究了与温度有关的预期寿命的收益和损失以及极端热浪引起的额外死亡率,并通过在预测间隔中评估这一新的风险因素来量化它们。此外,我们分析了法国大都会的地理差异。
高管摘要一月在加拿大大部分地区都很温暖。最高温度异常发生在艾伯塔省西北部,不列颠哥伦比亚省北部,育空地区,西北地区西北地区,魁北克北部和拉布拉多尔。在东部地区,发生了巨大的温度波动,大部分温暖的天气发生在1月初,凉爽的空气在本月晚些时候到达,但仅在南部地区产生接近正常的月度值。kuujjuaq在魁北克北部的Ungava湾底部记录的每月温度异常为11 C,并在冰冻上连续四天创造了记录。在南部海洋省份,温度保持在正常状态,北部的温度比正常温暖。在萨斯喀彻温省极端的萨斯喀彻温省和曼尼托巴省以及安大略省西部和南部的极端温度略低。在西方,雪地条件在本月底恢复了,随着2月开始,较冷的条件到达。
铁姆肯公司建议对其成品(轴承、部件和组件,以下称为“产品”)遵循以下存储指南:• 除非铁姆肯公司另有指示,否则产品应保存在原包装中,直到准备投入使用为止。• 请勿移除或更改包装上的任何标签或模板标记。• 产品应以不会刺穿、挤压或以其他方式损坏包装的方式存储。• 产品从包装中取出后,应尽快投入使用。• 从散装容器中取出非单独包装的产品时,应在取出产品后立即重新密封容器。• 请勿使用已超过铁姆肯公司保质期指南声明中定义的保质期的产品。• 存储区域的温度应保持在 0º C (32º F) 和 40º C (104º F) 之间;温度波动应尽量减少。• 相对湿度应保持在 60% 以下,表面应保持干燥。
摘要 热管理是现代电子、航空电子、汽车和储能系统中面临的重要挑战。虽然通常使用被动热解决方案(如散热器或散热器),但主动调节热流(例如通过热开关或二极管)将提供对热瞬变管理和系统可靠性的额外控制程度。本文我们报告了第一个基于柔性、可折叠石墨烯膜的热开关,其工作电压低(约 2 V),热开关比高达约 1.3。我们还采用主动模式扫描热显微镜来实时测量设备行为和开关。针对基于双夹悬浮膜的热开关的一般情况,开发了一个紧凑的分析热模型,突出了热设计和电气设计挑战。系统级建模展示了调节温度波动和平均温度作为开关比的函数之间的热权衡。这些基于石墨烯的热开关为在密集集成系统中主动控制快速(甚至纳秒)热瞬变提供了新的机会。
kynar®HSV系列PVDF粘合剂系列提供快速溶解,易于加工,高吞吐量,稳定的浆液粘度以及通过许多周期和广泛温度波动的高粘附力。通过Arkema仔细控制粘合剂树脂的功能化,可以实现较低的粘合剂负荷。这允许更高浓度的活性材料,较低的内部电阻和跨电极的高内聚力。HSV系列在电解质中还表现出非常低的肿胀,可以通过微调结晶度量身定制。这些等级提供了一流的能力保留率和电化学抗性,稳定性在宽电压范围内(高达5V li+/li)。热稳定性在此范围内也是稳定的。在电池行业有近20年的经验,我们不仅了解创新的重要性,而且了解一致的质量和供应。通过化学加工行业的全球经验多年(例如,半导体,核,饮用水,医疗保健),我们的团队在非常高的纯度PVDF方面开发了行业领先的能力。
抽象的外星长期栖息地系统(此后称为栖息地系统)需要开创性的技术进步,以克服隔离和具有挑战性的环境引入的极端需求。栖息地系统必须按照连续的破坏性条件下的意图运行。设计需要具有挑战性的环境将在栖息地系统上(例如,野生温度波动,银河宇宙射线,破坏性灰尘,震荡,振动和太阳粒子事件)上放置的要求代表了这项努力中最大的挑战之一。这个工程问题需要我们设计和管理栖息地系统具有弹性。系统的弹性需要一种全面的方法,该方法通过设计过程来解释中断,并适应它们的运行方式。随着栖息地系统的发展 - 随着物理规模,复杂性,人口和连通性的成长以及操作的多样化,它必须继续保持安全和弹性。在这项努力中,我们应该利用在开发响应灾难性自然危害,自动机器人机器人平台,智能建筑,网络物理测试,复杂的系统以及诊断系统以及智能健康管理预后的反应的民事基础设施中学到的经验教训。这项研究强调了系统弹性和网络物理测试在应对开发栖息地系统的巨大挑战方面的重要性。简介将人类送往月球的追求(这是停留的时候),火星已经参与了世界太空社区。这场现代太空竞赛最终将导致长期解决。2015年,美国宇航局发布了其在火星上建立长期定居点的计划:“我们为人们的工作,学习,运作和可持续地居住在地球以外的地球长期以外的时间都为人们寻求能力。” NASA(2015)。人类面临着新的挑战。,我们准备好在地球以外建立永久性的人类定居点了吗?外星栖息地系统需要开创性的技术进步,以克服隔离和极端环境引入的前所未有的需求。长期栖息地系统(此后称为栖息地系统)必须在连续的破坏性条件和有限的资源下按预期运行。设计极端环境将放置在栖息地系统上的要求,例如野生温度波动,银河宇宙射线,破坏性灰尘,灭气体撞击(直接或间接),振动和太阳粒子事件,呈现
颗粒被包装在25公斤的聚乙烯袋中,并在合格的聚合物1375 kg的合格负载下在收缩包裹或拉伸包裹的托盘上运输。我们在袋子之间使用粘合剂,以避免它们滑倒。在从托盘上取出袋子时要注意这个事实。首选方法是首先提起袋子而不会旋转。热处理的托盘,使用后运行,使用后收集托盘,并将重用作为可持续的圆形系统的一部分。PRS托盘始终保留PR的财产。有关更多详细信息,请联系Slovnaft或MOL石化的销售代表。由于聚乙烯是一种可燃物质,因此应观察到适用于仓库和储藏室中可燃材料的消防安全规则。如果聚合物储存在高湿度和温度波动的条件下,则大气中的水分可以在包装中凝结。如果发生,建议在使用前干燥的颗粒。在储存期间不应暴露于40°C以上的紫外线辐射和温度。生产者对不利存储造成的任何损害不承担责任。
焊料疲劳是电力电子模块中观察到的主要故障模式之一。在使用条件下,电力电子部件会受到由电阻加热引起的反复温度波动。由于热膨胀系数不匹配,材料互连处会产生热机械应力。尽管如此,高可靠性应用要求使用寿命长达 30 年。因此,需要加速测试方法。然而,由于非弹性变形的应变率依赖性,理论寿命建模对于将加速测试方法的结果与通常的使用条件进行比较是必要的。本研究报告了一种在 20 kHz 超声波频率下运行的机械测试方法。在测试过程中,样品会受到反复弯曲变形,直到焊点最终断裂。确定了从室温到 175 ◦ C 的不同温度下裂纹萌生的循环次数。此后,对疲劳实验进行 FEM 计算机模拟,其中粘塑性 Anand 模型用作焊料的材料模型。用损伤累积模型评估焊料中裂纹的起始时间,该模型结合了 Coffin-Manson 模型和 Goodman 关系的多轴版本。结果表明,该模型可应用于焊料合金 PbSnAg、Sn3.5Ag 和 SnSbAg。
硕士论文 LIZARD 实验的电子子系统设计 联系人:Lennart Ziemer l.ziemer@tu-berlin.de 甲虫、壁虎、蜘蛛和其他昆虫的肢体上形成了微结构,使它们能够粘附在几乎任何表面上。它们的工作原理基于范德华力,这使得它们能够在太空中使用。宇航系小型卫星会合与机器人小组利用合成壁虎材料开发对接机制。微结构干胶(MDA)。它们除了具有被动性和简单性之外,还具有重量轻、无需电源等优点。当前的合成 MDA 由对空间环境特性(例如温度波动、真空和辐射)敏感的聚合物制成。 LIZARD(长期研究零重力、真空和辐射对壁虎材料的影响)实验旨在更深入地了解这些环境因素的长期影响。实验包括四个相同的组件,每个组件由一个线性电机、一个力限制器、一个 MDA、一个表面探头、一个摄像机、一个光源、一个温度传感器和一个力传感器组成。