气候变化对资源的可访问性和维持不断增长的人口的粮食安全产生了多样化的影响。在这个时代,诸如小米之类的气候富农作物对国家的粮食安全具有更大的重要性和影响。印度部落地区的小米种植为响应气候变异性提供了一个独特的弹性例子。 这项研究是在泰米尔纳德邦(Tamil Nadu)的纳马卡尔(Namakkal)地区的Kolli山上进行的,以研究部落农民对气候变化的看法。 使用多阶段随机抽样方法和经过验证的半结构访谈时间表从来自五个村庄的125个部落农民收集数据。 通过不同的统计工具收集了定性和定量数据进行分析。 大多数部落农民都在年轻时,具有高水平的文盲,其土地不到1.5公顷,其大众媒体公用事业较低,决策能力有限。 据透露,近年来,干旱,不合时宜的降雨,温度波动和不规则天气状况的发生增加了。 大多数部落农民都认为气候变化显着影响低资源的农民确保生计的能力。 社会参与和大众媒体利用与部落农民对气候变异性的看法正相关。印度部落地区的小米种植为响应气候变异性提供了一个独特的弹性例子。这项研究是在泰米尔纳德邦(Tamil Nadu)的纳马卡尔(Namakkal)地区的Kolli山上进行的,以研究部落农民对气候变化的看法。使用多阶段随机抽样方法和经过验证的半结构访谈时间表从来自五个村庄的125个部落农民收集数据。通过不同的统计工具收集了定性和定量数据进行分析。大多数部落农民都在年轻时,具有高水平的文盲,其土地不到1.5公顷,其大众媒体公用事业较低,决策能力有限。据透露,近年来,干旱,不合时宜的降雨,温度波动和不规则天气状况的发生增加了。大多数部落农民都认为气候变化显着影响低资源的农民确保生计的能力。社会参与和大众媒体利用与部落农民对气候变异性的看法正相关。科学的机构知识和当地社区知识必须与农民的气候变化经验融合在一起,以使其能够最大程度地减少气候变化对小米生产的影响,并制定一项在未来气候情况下改善生产的策略。该研究建议将传统的小米农业实践与现代农业技术以及对有针对性的政策进行融合,以加强部落农民的机构支持,市场获取和能力建设计划。
• 360 直流变频驱动技术:采用 360 全直流变频驱动技术,压缩机旋转方向和速度可控制,通过各种运行条件优化能源使用和压缩机稳定性。这可确保最佳空间温度控制,同时提供安静的运行。 • 压力传感器:该装置包含压力传感技术,可在冷却模式下检测低压以保护系统免受损坏。还可以通过从系统吸入压力计算室内盘管温度来实现智能控制。 • 室外机外形更小,安装更灵活:与传统空调相比,这款侧排放室外机可节省约 35% 的空间。它提供墙壁、庭院或屋顶安装的灵活性。 • 稳定的温度控制意味着最佳舒适度:直流逆变器能够在启动时提供全容量以快速冷却,并调整速度以防止温度波动和能量损失。 • 机构列出:经 CSA 认证符合 UL 1995/CSA 22.2 安全认证。性能认证符合 ANSI/AHRI 标准 210/240,符合单元式小型设备认证计划。
高精度温度测量正成为应用物理和基础物理等众多领域的横向需求。在大多数情况下,高精度与对高稳定环境的需求相伴而生,以确保实验的长期运行,例如系外行星探测仪器的情况 [1]。为了实现更高的稳定性,将这些实验转移到太空是一种自然的选择。事实上,越来越多的任务正在寻求在轨实验提供的稳定性,这是实现其科学目标的关键要求 [2-5]。在太空任务中,LISA 等引力波探测器 [6] 代表了温度传感中一个特别具有挑战性的领域,主要原因是这些天文台的设计目标是在毫赫兹频率范围内实现最高灵敏度。在这些超稳定操作状态下,温度波动会通过各种现象干扰科学测量,包括直接施加到测试质量上的热感应力和干涉仪中温度引起的路径长度变化 [ 7 – 10 ]。近年来,人们对开发能够实现高温度分辨率的新技术的兴趣日益浓厚。光学计量实验已证明温度精度为 80 nK / √
独立于地球的永久性外星栖息地系统必须在持续的破坏性条件下、地球支持极其有限和无人驾驶时间延长的情况下按预期运行。设计满足极端环境(例如剧烈的温度波动、银河宇宙射线、破坏性尘埃、流星体撞击(直接或间接)、振动和太阳粒子事件)对长期深空栖息地的要求是这项工作中最大的挑战之一。这种背景要求我们必须建立专门知识和技术来构建具有弹性的栖息地系统。弹性不仅仅是稳健性或冗余性:它是一种系统属性,它通过设计选择和维护过程来考虑预期和意外的干扰,并在运行中适应它们。我们目前缺乏在栖息地系统中实现高水平弹性所需的框架和技术。弹性外星栖息地研究所 (RETH i) 的使命是利用现有的新技术提供态势感知和自主性,从而设计出能够适应、吸收和快速恢复预期和意外中断的栖息地。我们正在建立完全虚拟和耦合的物理虚拟模拟功能,这将使我们能够探索各种潜在的深空智能栖息地配置和操作模式。
由于振动和旋转跃迁,一氧化碳和甲烷等许多分子在中红外范围内都有强的吸收线。1 自 1994 年发明以来,中红外量子级联激光器 (QCL) 已成为分子气体传感的流行选择。2 分子光谱的精度和分辨率高度依赖于 QCL 的光谱线宽。3 由于接近于零的线宽展宽因子 (LBF),4 QCL 本身的固有线宽只有几百赫兹,接近肖洛-汤斯极限。5 然而,电流源噪声、温度波动和机械振动引起的闪烁噪声(1/f 噪声)会显著加宽自由运行 QCL 的实际线宽至兆赫兹范围。6 为了将 QCL 的光谱线宽缩小到千赫兹或赫兹范围,已经开发出各种各样的频率稳定技术。一种主要方法是将 QCL 频率锁定在分子吸收线的一侧,但代价是波长可调性的损失。7、8 另一种方法是通过庞德-德雷弗-霍尔方法将 QCL 锁定在高精度光学腔体上,这种方法容易受到外部声学和机械振动的影响。9 – 11 一种更常见的方法是将 QCL 相位锁定在近红外光学腔体上。
预计将在2025年3月 - 2025年3月(60%的机会)期间过渡到ENSO中立之前,一直持续到2025年2月至4月(59%的机会)。虽然整个月的温度波动,但12月的总平均每月温度在佛罗里达州的正常情况接近。平均每月温度偏离正常温度的范围从基韦斯特的-1.3 f到tallahassee的+1.2 fr(thalahassee)(有关精选城市的表1,请参见表1和附录1)。一个冷阵线在本月的第一周影响了该州的北半部,并导致了整个Panhandle的冰冻温度。在塔拉哈西(Tallahassee)的最低温度下降至25 f f,在盖恩斯维尔(Gainesville)第4次。尽管本月的起步寒冷,但在12月下半年的温度通常高于正常水平,可以在佛罗里达州又结束温暖的一年。平均温度在月的最后一周偏离正常,范围从 +4-8°F高于正常水平,一些孤立的站点报告的情况甚至更高。全州,2024年12月在过去的130年中排名第48次,全州每月平均温度为60.9 fef,比长期平均值高2.1 f。
摘要。本文介绍了一种增强的能源管理策略,该策略采用了带有光伏(PV)模块的独立直流微电网中电池的电荷状态(SOC)。有效的能源管理对于确保微电网中负载单元的不间断电源至关重要。解决了外部因素所带来的挑战,例如温度波动和太阳辐照度的变化,可以部署能源存储系统,以补偿外部因素对PV模块输出功率的负面影响。所提出的方法考虑了微电网元素的各种参数,包括来自来源的可用功率,需求功率和电池SOC,以开发具有负载拆分能力的有效能量控制机制。通过考虑这些参数,该策略旨在优化可用资源的利用,同时确保可靠的连接负载电源。电池的SOC在确定最佳充电和排放曲线方面起着至关重要的作用,从而在微电网内实现了有效的能量管理。为了评估所提出方法的有效性,设计了算法并进行了模拟。所提出的算法通过结合功率和基于SOC的方法来有效控制来利用混合方法。通过分析仿真结果,发现所提出的方法能够传递预期的负载功率,同时以预定的SOC水平增加电池的生命周期。
5 实用直流 SQUID:配置和性能 171 5.1 简介 172 5.2 直流 SQUID 基本设计 175 5.2.1 非耦合 SQUID 175 5.2.2 耦合 SQUID 177 5.3 磁强计 186 5.3.1 概述 186 5.3.2 用于高空间分辨率的磁强计 187 5.3.3 用于高场分辨率的磁强计 188 5.4 梯度计 193 5.4.1 概述 193 5.4.2 薄膜平面梯度计 195 5.4.3 线绕轴向梯度计 198 5.5 1/ f 噪声和在环境场中的操作 200 5.5.1 关于 1/ f 噪声的一般说明 200 5.5.2 临界电流波动 200 5.5.3 热激活涡旋运动 201 5.5.4 涡旋的产生 203 5.5.5 降低涡旋运动产生的 1/ f 噪声 205 5.5.5.1 概述 205 5.5.5.2 涡旋钉扎 205 5.5.5.3 窄线宽器件结构 206 5.5.5.4 通量坝 207 5.6 其他性能下降效应 208 5.6.1 磁滞 208 5.6.2 射频干扰 209 5.6.3 温度波动和漂移 210
糖尿病足是糖尿病 (DM) 的主要并发症。糖尿病导致足部血液循环减少,因此足底温度降低。热成像是一种非侵入性成像方法,使用红外 (IR) 摄像机查看热模式。它可以定性和视觉记录血管组织的温度波动。但手动诊断这些温度变化很困难。因此,计算机辅助诊断 (CAD) 系统可能有助于准确检测糖尿病足,以防止溃疡和下肢截肢等创伤性后果。在本研究中,拍摄了 33 名健康人和 33 名 2 型糖尿病患者的足底热图。使用离散小波变换 (DWT) 和高阶谱 (HOS) 技术分解这些足部图像。从分解图像中提取各种纹理和熵特征。这些组合 (DWT+HOS) 特征使用 t 值进行排序,并使用支持向量机 (SVM) 分类器进行分类。我们提出的方法仅使用五个特征就实现了 89.39% 的最大准确度、81.81% 的灵敏度和 96.97% 的特异性。所提出的基于热成像的 CAD 系统的性能可以帮助临床医生对糖尿病足的诊断提出第二意见。
农业中的数据科学随着对农民的数据可访问性的增加而发展,这使他们可以分析和做出决策。今天,诸如物联网(IoT)之类的新技术可以在专用数据库和/或数据仓库中收集和存储农场和环境数据(例如土壤数据和水数据)。这些农业数据可以与其他数据源(例如,遥感,气象站和社交媒体)结合使用,高度照亮了应对新挑战的需求,例如使用异质数据。农业中的数据科学旨在通过不同的技术探索和挖掘农业数据,例如机器学习,深度学习,计算机视觉,文本挖掘和大语言模型(LLMS)。例如,数据科学可通过使用多种数据源(例如,传感器数据,文本,卫星图像和植物图像)来预测不同变体的作物产量,动植物和动物疾病,包括降雨,温度波动和土壤条件。因此,农业专业人员和决策者可以使用数据科学来获取有关非洲农业活动的信息和知识。在Daafrica'2024召开的研讨会上,带来了约50名与会者,提交了九个摘要,并终于在该会议记录卷中发表了7篇简短论文。