本研究的目的是现场检测使用激光粉末床熔合 (LPBF) 增材制造工艺制造的金属部件中的缺陷形成情况。这是一个重要的研究领域,因为尽管节省了大量成本和时间,但航空航天和生物医学等精密驱动型行业仍不愿使用 LPBF 制造安全关键部件,因为该工艺容易产生缺陷。LPBF 和增材制造中的另一个新兴问题与网络安全有关——恶意行为者可能会篡改工艺或在部件内部植入缺陷以损害其性能。因此,本研究的目标是开发和应用一种物理和数据集成策略,用于在线监控和检测 LPBF 部件中的缺陷形成情况。实现此目标的方法是基于将现场熔池温度测量(孪生)与基于图论的热模拟模型相结合,该模型可以快速预测部件中的温度分布(热历史)。该方法的创新之处在于,通过现场熔池温度测量逐层更新计算热模型提供的温度分布预测。这种数字孪生方法用于检测使用商用 LPBF 系统制造的不锈钢 (316L) 叶轮形部件中的缺陷形成。生产了四个这样的叶轮,模拟了 LPBF 部件中缺陷形成的三种途径,即:加工参数的变化(工艺漂移);机器相关故障(镜片脱层)以及故意篡改工艺以在部件内部植入缺陷(网络入侵)。使用 X 射线计算的
电池单元的温度测量对于电池单元温度监控,使用带有 NTC SMD 的柔性 PCB 正变得越来越流行。在这种柔性电路应用中,使用带有软端子的 NTC SMD 非常重要,这样才能承受 FPCB 的弯曲和振动而不会发生故障。我们的 NTCS 系列设备均使用软镍屏障、镀锡端子。它们有 0402、0603 和 0805 外壳尺寸,具有不同的 R25、RT 斜率或 B 值,公差低至 1%。除此之外,它们都符合 AEC-Q200 标准,大多数零件编号也经过 c-UL-us 认证。
6.1.7 接近度测量................................................................................................195 6.1.8 温度测量................................................................................................215 6.1.9 其他传感器................................................................................................237 6.2 输入接口模块................................................................................................247 6.3 HART 通信接口................................................................................................295 6.4 逻辑解算器.............................................................................................................303 6.4.1 可编程电子系统....................................................................................303 6.4.2 有限功能系统和继电器....................................................................329 6.5 输出接口模块................................................................................................343 6.6 最终元件.............................................................................................................385 6.6.1 最终元件接口.............................................................................................387 6.6.2 气动接口.....................................................................................................403 6.6.3 执行器.............................................................................................................409 6.6.4 阀门................................................................................................................423 6.6.5 执行器-阀门组合....................................................................................433 6.6.6 燃气压力调节阀....................................................................................451 6.6.7 其他最终元件.......................................................................................459
TCN75A 产品带有用户可编程寄存器,可为温度传感应用提供灵活性。寄存器设置允许用户选择 9 位至 12 位温度测量分辨率、配置省电关断和单次(关断时按命令进行单次转换)模式以及指定温度警报输出和滞后限值。当温度变化超出指定限值时,TCN75A 会输出警报信号。用户可以选择将警报输出信号极性设置为恒温器操作的低电平有效或高电平有效比较器输出,或设置为基于微处理器的系统的温度事件中断输出。
12. 电学性质................................................................................................321 12.1 简介...............................................................................................321 12.2 金属、绝缘体和半导体:能带理论....................................321 12.2.1 金属.......................................................................................324 12.2.2 半导体.................................................................................325 12.2.3 绝缘体.......................................................................................328 12.3 电导率的温度依赖性....................................................................328 12.3.1 金属.......................................................................................329 12.3.2 本征半导体.......................................................................330 12.4 非本征(掺杂)半导体的性质....................................................335 12.5 使用非本征(掺杂)半导体的电气设备.....................................336 12.5.1 p,n 结.....................................................................................336 12.5.2 晶体管................................................................................342 12.6 电介质...............................................................................................344 12.7 超导性...............................................................................................347 12.8 温度测量:教程��������������������������������������������������������������������������������352
在实验中评估 MRI 扫描期间植入物的安全性时,传感器放置的位置至关重要。使用测量和有限元建模的组合来评估测量对传感器放置的敏感性,以评估一组校准圆柱体末端的温度升高。模拟使用 COMSOL Multiphysics 创建的耦合热电磁模型来虚拟复制测量条件。评估了不同长度和直径的圆柱形植入物的参数模型中的热梯度,以量化在估计的温度测量不确定度内测量植入物加热所需的传感器放置精度。通过这种方式,我们旨在增强对 MRI 中植入物加热的实验程序和安全标准的要求的理解。
长度计量学并不是频率计量学产生根本影响的唯一领域。Kamper 和 Zimmcrmnn 1971 已经完成了一些绝对温度测量,这些测量涉及频率标准和频率计量学 [Kamper 和 Zimmcrmnn 1971]。他们测量了约瑟夫森结振荡器的频率噪声,该振荡器与浸没在低温浴中的电阻耦合。温度 T 与频率噪声通过涉及 h、e 和 k(分别为普朗克常数、电解质电荷和玻尔兹曼常数)的基本物理关系相关。目前,直流电位差(电动势,EMF)的最佳 [即最清晰、最稳定、最便携] 二级标准是约瑟夫森结
•Parker Hannifin仪器(全线主分销商)•Ashcroft仪表,隔膜密封件和工业温度计•Ashcroft开关和换能器•高压灭菌锥和线产品•Bliss Americas•Americas•Americas•标题过滤量•Partek&Texloc Temerly•Skinner and texloce•Skinner and flow•skinner and flow•hyrifif•hyring solif•hyring solif•hyring solif•hyring solifif•hyrifif inforif调节器,阀门和CGA连接•多层捆绑包•Parker Parflex软管和配件•JMS东南温度测量•WEKA水平指示•PGI歧管•Parker Balston烘干机,过滤和空气发电机•TechLine&ZSI(Cushaclamp)安装系统
目前,体温传感技术已发展用于医疗诊断、伤口愈合、监测皮肤水分和血流。[1–5] 目前已开展了广泛的体温监测研究,研究方法多种多样,[6–15] 但对于病毒感染者、儿童和老人等高危人群,无法进行超高精度和连续监测。例如,当前的 2019 年冠状病毒病 (COVID-19) 大流行表明,通过监测体温来追踪病毒感染的风险因素非常重要。[16] 使用红外 (IR) 摄像机进行传统的间接温度传感是温度测量最广泛的方法。红外摄像机可以精确测量温度,但会严重受到人体运动的影响。