黑体辐射 • 黑体辐射的能量并不是由所有波长的光均匀共享的。 • 黑体辐射的光谱表明某些波长比其他波长获得更多的能量。 • 显示了三种不同温度的三种光谱。 • 以下是有关黑体辐射的一些实验事实:1. 黑体光谱仅取决于物体的温度,而不取决于材料的类型,即,如果温度相同,所有材料都会发射相同的黑体光谱。2. 随着物体温度的升高,它会在所有波长下发射更多的黑体能量。3. 随着物体温度的升高,黑体光谱的峰值波长向更短的波长移动。例如,蓝色恒星比红色恒星更热。4. 黑体光谱总是在左侧(短波长、高频侧)变小。
摘要:利用2200-yr CESM1工业前模拟,本研究研究了单年(SY)和多年(MY)LaNiñas对它们对冬季表面空气温度的各自影响的影响,重点介绍了模型中高层间气温的冬季空间,重点介绍了指定机制的冬季 - 高层间气温。在四个大陆部门确定了明显的影响:北美,欧洲,西伯利亚西伯利亚(W-西伯利亚)和西伯利亚东部(E-Siberia)。模拟的SyLaNiña事件的典型影响是在欧洲和W&E-Siberia上的异常变暖,以及北美的异常冷却。模拟了我的LaNiña事件,减少了北美的典型异常冷却,以及在W&E-Siberia上的典型异常变暖,但增强了欧洲典型的异常变暖。模拟我的LaNiñas在第一个冬季的明显影响比第二个冬天更为突出,除了W-Siberia之外,在第二个冬季,明显的影响更加明显。CESM1模拟中的这些总体不同的影响可以归因于这些大陆上的敏感性的不同敏感性与我和SyLaNiñas之间的差异在其强度,位置和诱发的大西洋海洋表面温度异常中的差异。这些特性差异与北美太平洋,北大西洋振荡,印度洋 - 诱发波浪火车和热带北大西洋 - 诱发的波浪火车机制的不同气候影响有关。然后对1900年至2022年的观察结果进行验证,以确定CESM1模拟中的差异。
城市热岛(UHIS)已经研究了100多年(Stewart,2019年)。根据背景农村温度和峰值城市温度之间的变化,它们定义为39(Oke,40 1973)。开创性的工作从十九世纪初到二十世纪初期,强调了城市对温度的41影响(霍华德,1833年;雷诺,1868年)。1920年至1940年42年的创新方法有助于量化和映射这种效果(Schmidt,1927)和实验研究43从1950年到1980年,对此有了更好的了解(Sundborg,1951年)。本研究源于44个通过移动45运动来衡量城市温度的创新方法所做的工作。它评估了城市环境46中土地表面特性对温度的影响以及由表面特性近似引起的相关不确定性。47
在控制样品温度的同时测量 CD 光谱,可以提供有关与温度扰动相关的构象变化的重要信息,并可用于生物聚合物的研究。温度控制程序根据用户选择的参数测量热变性曲线(温度扫描)和 CD 光谱随温度的变化。可选的热变性分析程序可根据温度扫描确定转变温度和热力学参数,例如 ΔH 和 ΔS。
在巴利阿里群岛,经过调整工作模式和温度的影响后,12 月的电力需求比 2023 年同期高出 5.3%。总需求估计为 454,421 兆瓦时,比去年 12 月高出 8.5%。2024 年的总体而言,巴利阿里群岛的总需求估计为 6,027,107 兆瓦时,比 2023 年高出 0.4%。经过调整工作模式和温度的影响后,2024 年巴利阿里群岛的需求比上一年高出 1.6%。
抽象的综合研究比较了城市热相关的死亡率和发病率增加,但仍缺乏比较大都市量表对空气温度的影响的影响。因此,我们使用WRF BEP -BEM气候模型在2018年夏季大伦敦管理局区域内2 m的2 m天气对空气温度的影响进行建模。我们发现,平均凉爽的屋顶最有效地降低了温度(〜 -1.2°C),超过绿色屋顶(〜0°C),太阳能电池板(〜 -0.5°C)和街道水平植被(〜 -0.3°C)。遍布伦敦(英国)的空调的应用可将空气温度提高约+ 0.15°C。可行的太阳能电池板可以涵盖其相关的能量消耗。当前可行的绿色屋顶和太阳能电池板的部署在大规模降低温度下无效。我们提供了表面能量平衡的详细分解,以解释空气温度的变化并指导未来的决策。
