贵公司始终坚持“以人为本”的理念,致力于培育“以客户为中心的文化”,始终将客户放在第一位。贵公司在需求出现之前就加强了温控物流 (TCL) 解决方案。由于各州的本地限制不同,第二波疫情确实带来了挑战;最后一英里的紧张意味着氧气浓缩器和其他关键任务设备必须按时交付,而这些设备是第二波疫情期间的主要必需品。鉴于行业限制,无法高效地提供关键任务医疗和制药设备的最后一英里交付,贵公司利用其能力——波音 757 机队、能够覆盖全国 35000 多个地点的地面网络以及多元化的行业专家团队,来弥补供应链中的空白,并支持国家抗击疫情。
该芯片通过引线键合到 PCB 上,并放置在温控室 (Espec SH-241) 中。使用信号发生器 (Keysight 33500B),以 140kHz 的频率用 20 伏峰峰值 (Vpp) 15 周期方波脉冲驱动 pMUT,并使用示波器 (Keysight DSOX4024A) 捕获回声。使用高压配电盘在 TX 和 RX 模式之间切换 pMUT。值得注意的是,阵列中的所有 16 个膜都作为发射器 (TX) 脉冲,然后切换为接收 (RX) 回声信号。芯片被限制在 30 厘米长的有机玻璃管内,以最大限度地减少在没有放大电子器件的情况下由于扩散而造成的信号损失。室的温度以 10°C 为增量,从 30 到 90°C 不等。每次温度增加时,在测量之前都要观察 2 分钟的稳定时间
封装在工程实验室环境中。这种封装的传统方法是使用复杂的焊接站,如 Metcal APR5000,它提供光学对准,以便在印刷电路板 (PCB) 上准确放置部件,并运行预定义的回流曲线,使用温控气流焊接或解焊部件。但是,由于成本高昂,这种设施并不常见。或者,使用标准焊接站通常会导致常见错误。用烙铁头接触顶部金属表面加热是最有害的错误之一,会导致 MOSFET 严重损坏。本应用说明是 PolarPAK 系列支持文档之一,介绍了与生产回流曲线紧密匹配的廉价实验室内推荐焊接程序,同时确保即使在实验室工作台上也能获得可靠的焊点。焊点质量通过 X 射线评估,零件的电气功能在焊接和返工程序后均得到验证。
ITS-90 规定使用 2.5 欧姆和 0.25 欧姆 SPRT 作为银点 (962°C) 高温标准。这种非常小的电阻很难测量,通常只能用电阻桥测量。超级温度计直接解决 ITS-90 问题,绝对是最具成本效益的解决方案。此外,25 欧姆 SPRT 的分辨率为 0.0001°C。可以轻松进行比较校准或针对主要标准固定点的校准。两种仪器都有两个通道,可同时处理两个探头。显示和记录实际温度,或选择直接从屏幕读取两者之间的差异。两种超级温度计都有自己的板载电阻器。每个都是高稳定性、低热系数、四端子电阻器,适用于温度计的每个电阻范围:0.25 欧姆、2.5 欧姆、10 欧姆、25 欧姆、100 欧姆和热敏电阻范围。电阻器安装在内部温控烤箱中。还有什么更好的吗?嗯,实际上确实如此。
摘要 — 肌磁图 (MMG) 是测量人体骨骼肌中由电活动产生的磁信号的方法。然而,目前开发的用于检测如此微小磁场的技术体积庞大、成本高昂,并且需要在温控环境下工作。开发一种小型化、低成本和室温磁传感器为加强这一研究领域提供了一条途径。在此,我们介绍了一种用于室温 MMG 应用的集成隧道磁阻 (TMR) 阵列。TMR 传感器采用低噪声模拟前端电路开发,以在高信噪比下检测未进行和进行平均的 MMG 信号。MMG 是通过使用肌电图 (EMG) 信号作为触发器对信号进行平均来实现的。观察到的幅度为 200 pT 和 30 pT,对应于手紧张和放松的周期,这与基于有限元法 (FEM) 的肌肉模拟一致,该法考虑了从观察点到磁场源的距离的影响。
1990 年国际温标 (ITS-90) 定义为从 0.65 K 向上到光谱辐射测温法可测量的最高温度,辐射测温法基于普朗克辐射定律。在开发时,ITS-90 尽可能接近地表示热力学温度。本文第一部分描述了高达 1234.93 K 的接触式测温的实现,ITS-90 的温度范围是根据 15 个固定点的温度计校准和纯物质相平衡状态的蒸气压/温度关系来定义的。实现是通过使用固定点设备、包含最高纯度的样品和合适的温控环境来完成的。所有组件的构造都是为了实现温度计校准样品的定义平衡状态。温度实现和测量的高质量是有据可查的。描述了各种研究工作,包括通过测量高达 800 K 的气体中声速来改善热力学温度的不确定性的研究、应用噪声测温技术的研究以及对热电偶的研究。温度计校准服务和适合“现场”温度计校准的高纯度样品和设备
摘要 本文描述了在现场测量量子霍尔电阻标准时对两种不同的数字阻抗电桥进行比较,目的是实现电容的 SI 单位法拉。在 EMPIR 联合研究项目 18SIB07 GIQS(石墨烯阻抗量子标准)中,德国联邦物理技术研究院 (PTB) 开发了一种约瑟夫森阻抗电桥,意大利国家计量研究所 (INRIM) 和都灵理工大学 (POLITO) 开发了一种电子数字阻抗电桥。前者基于约瑟夫森波形发生器,后者基于电子波形合成器。INRIM-POLITO 阻抗电桥被转移到 PTB,通过测量温控标准和石墨烯交流量化霍尔电阻 (QHR) 标准对这两个电桥进行了比较。 1233 Hz 下 10 nF 电容标准的校准不确定度在 PTB 电桥的 1 × 10 − 8 以内,INRIM–POLITO 电桥的不确定度在 1 × 10 − 7 左右。比较在综合不确定度内相互验证了两个电桥。结果证实,数字阻抗电桥允许从 QHR 实现 SI 法拉,其不确定度可与 BIPM 和主要国家计量机构的最佳校准能力相媲美。
发展 罗克韦尔柯林斯致力于为您提供创新、可靠的 HF 解决方案。无论是全新的全集成高频数据链路 (HFDL) 无线电、低成本 HFDL 升级套件还是数字调谐天线耦合器,罗克韦尔柯林斯都会将您的 HF 投资提升到更高的性能水平。规格 频率范围 2.0 至 29.9999 MHz 连续 RF 功率输入 操作:400 W PEP + 1 dB 调谐:85 W 平均最大 初始调谐时间:2 至 4 秒(典型值),7 秒(最大值) 快速调谐:250 毫秒 调谐精度 1.3:1 VSwR 最大值 主电源 115 V ac,400 Hz 占空比 连续,平均功率为 125 W 调制类型 SSB、AMe、Cw 和 PSK 温度范围 -40°C 至 +70°C 操作 振动 D0-160C Cat C、y、L 冲击 6 g,持续时间为 11 MS 碰撞安全性 15 g 峰值,持续时间为 11 MS 高度非加压、非温控,最高可达 50,000 英尺 湿度 0% 至 95%,65°C 至 38°C, 240 小时曝光尺寸高度:最大 7.52 英寸宽度:最大 5.02 英寸长度:15.72 +/- 0.06 英寸重量最大 17 磅
发展 罗克韦尔柯林斯致力于为您提供创新可靠的 HF 解决方案。无论是全新的全集成高频数据链路 (HFDL) 无线电、低成本 HFDL 升级套件还是数字调谐天线耦合器,罗克韦尔柯林斯都能将您的 HF 投资提升到更高的性能水平。规格 频率范围 2.0 至 29.9999 MHz 连续 射频功率输入 工作:400 W PEP + 1 dB 调谐:平均最大 85 W 调谐时间 初始:2 至 4 秒(典型值),7 秒(最大值) 快速调谐:250 毫秒 调谐精度 1.3:1 VSWR 最大值 主电源 115 V ac,400 Hz 占空比 连续,平均功率为 125 W 调制类型 SSB、AME、CW 和 PSK 温度范围 -40°C 至 +70°C 工作 振动 D0-160C Cat C、Y、L 冲击 6 G,持续时间为 11 MS 碰撞安全性 15 G 峰值,持续时间为 11 MS 高度 非加压、非温控,最高可达 50,000 英尺 湿度 0% 至 95%,65°C 至 38°C,暴露 240 小时 尺寸 高度:最大 7.52 英寸宽度:最大 5.02 英寸 长度:15.72 +/- 0.06 英寸 重量:最大 17 磅