引言 多年来,在辐射测温领域已进行了许多次国际温标比对。这些比对涉及钨带灯 1,2 、辐射温度计 3,4 或最近的金属碳共晶定点 5,6 的转移,旨在比较不同国家计量机构 (NMI) 的 ITS-90(1990 年国际温标)实现情况。每个实验室的温标实现都被赋予了不确定度,考虑到定点测量以及实现中所用任何人工制品的校准和测量不确定度等因素(例如,辐射温度计的线性度、稳定性、校准、光谱响应和源尺寸效应 (SSE);钨带灯或黑体辐射源的校准和稳定性),以得出温标实现的总体不确定度 7 。 EUROMET 658 项目旨在通过比较每个参与者使用其实验室常用方法进行的测量结果来调查温度标度实现中某些基本参数(辐射温度计的 SSE、线性度和光谱响应)的不确定性。此外,还要求参与者使用其研究所常用的软件计算多种不同设计的黑体腔的发射率。这样做是为了投资
温度测量 1.0 简介 当今工业环境中的温度测量涵盖了各种各样的需求和应用。为了满足这些广泛的需求,过程控制行业开发了大量的传感器和设备来处理这一需求。在本实验中,您将有机会了解许多常见传感器的概念和用途,并实际使用这些设备进行实验。对于大多数机械工程师来说,温度是一个非常关键且广泛测量的变量。许多过程必须具有受监控或受控的温度。这可以是对发动机或负载设备的水温的简单监控,也可以是像激光焊接应用中的焊缝温度一样复杂的监控。可能需要监控更困难的测量,例如发电站或高炉烟囱气体的温度或火箭的废气温度。更常见的是工艺或工艺支持应用中的流体温度,或机器中固体物体(如金属板、轴承和轴)的温度。2.0 温度测量的历史 如今,使用的温度测量探头种类繁多,具体取决于您要测量的内容、需要测量的准确度、是否需要将其用于控制或仅用于人工监控,或者您是否甚至可以触摸要监控的内容。温度测量可分为几大类:a) 温度计 b) 探头 c) 非接触式温度计是该组中最古老的。测量和量化某物温度的需求始于公元 150 年左右,当时盖伦根据四个可观察的量确定了某人的“肤色”。直到 16 世纪科学发展起来,‘温度计’这一实际科学才开始发展。第一台实际温度计是《自然魔法》(1558 年、1589 年)中描述的空气温度计。这种装置是当前玻璃温度计的前身。到 1841 年为止,共有 18 种不同的温标在使用。仪器制造商 Daniel Gabriel Fahrenheit 从丹麦天文学家 Ole Romer 那里学会了校准温度计。1708 年至 1724 年间,Fahrenheit 开始使用 Romer 温标生产温度计,然后将其修改为我们今天所知的华氏温标。华氏通过将容器改为圆柱体并用水银代替早期设备中使用的酒精,极大地改进了温度计。这样做是因为它具有近乎线性的热膨胀率。他的校准技术是商业秘密,但众所周知,他使用了海盐、冰和水混合物的熔点和健康男性腋窝温度的某种混合物作为校准点。当
运输 建议将 Moderna 疫苗从冰箱运输到疫苗冷藏箱或 credo cube 中,温度保持在 +2°C 至 +8°C,以允许疫苗在运输过程中解冻(注意:这种运输方式不需要冷藏标记表)。Moderna 还可以以冷冻形式(-25°C 至 -15°C;最低可冷至 -40°C)在温度调节至 -40°C 的 credo cube 中运输。运输过程中必须保持并记录温度;还要记录运输地点、日期和时间,包括运输时间。 居家客户的疫苗运输 居家且无法去诊所的个人应该可以接种疫苗。可以运输 Moderna 疫苗为居家客户提供疫苗。可以使用上述疫苗运输指南运输穿刺瓶或预充式注射器。由于 TempTale 非常敏感,因此在为居家客户运送疫苗时,可以使用带有温度计的温标和冷标。必须考虑为居家客户规划疫苗使用,以避免浪费。
温度测量 1.0 简介 当今工业环境中的温度测量涵盖了各种各样的需求和应用。为了满足这些广泛的需求,过程控制行业开发了大量的传感器和设备来满足这一需求。在这个实验中,您将有机会了解许多常见传感器的概念和用途,并实际使用这些设备进行实验。 对于大多数机械工程师来说,温度是一个非常关键且广泛测量的变量。许多过程必须具有受监控或受控的温度。这可以是简单的发动机或负载设备水温监控,也可以是复杂的激光焊接应用中的焊缝温度监控。可能需要监控更困难的测量,例如发电站或高炉烟囱气体的温度或火箭的废气温度。更常见的是过程或过程支持应用中的流体温度,或机械中的金属板、轴承和轴等固体物体的温度。 2.0 温度测量的历史 如今,使用的温度测量探头种类繁多,具体取决于您要测量的内容、您需要的测量精度、您需要将其用于控制还是仅用于人工监控,或者您是否可以触摸您要监控的内容。 温度测量可分为几大类:a) 温度计 b) 探头 c) 非接触式温度计是该组中最古老的。 测量和量化某物温度的需求始于公元 150 年左右,当时盖伦根据四个可观察的量确定了某人的“肤色”。 直到 16 世纪科学发展之后,“温度计”的实际科学才发展起来 第一台真正的温度计是《自然魔法》(1558、1589)中描述的空气温度计。该装置是当前玻璃温度计的前身。到 1841 年为止,共有 18 种不同的温标在使用。仪器制造师丹尼尔·加布里埃尔·华伦海特从丹麦天文学家奥勒·罗默那里学会了校准温度计。1708 年至 1724 年间,华伦海特开始使用罗默温标制作温度计,然后将其修改为我们今天所知的华氏温标。华伦海特通过将储液器改为圆柱体,并用水银代替早期设备中使用的酒精,大大改进了温度计。这样做是因为它具有近乎线性的热膨胀率。他的校准技术是商业机密,但众所周知,他使用海盐、冰和水混合物的熔点和健康男性腋窝温度作为校准点。当
2018 年国际单位制 (SI) 进行全面修订时,温度单位开尔文的定义发生了变化。到目前为止,开尔文被定义为水三相点温度的分数,换句话说,是来自物质制品。现在它基于温度的微观定义,即测量物体原子的热扰动,与其成分的化学性质无关,通过玻尔兹曼常数 k 与温度相关。然而,在实践中,科学家和工业家使用特定的参考来测量温度。因此,国际温标 ITS-90 基于所考虑的温度范围的不同参考点:各种气体的三相点、金属的凝固点等。这些点之间使用复杂的插值公式来覆盖整个温标。如果要长期用新系统取代旧系统,那么平稳进行这一过渡至关重要,这不仅出于经济原因,也为了确保旧措施的可持续性。因此,计量学家经过多年的重要工作,建立了现行标度和新的热力学温度定义之间的对应关系。对于 LNE-Cnam 研究人员来说,这项大约十年前开始的庞大工程以多个连续的欧洲项目的形式出现,其中第二个项目 InK2 于去年结束。在此背景下,专家们开发或改进了几种绝对温度测量方法,并将其应用于整个温度范围。因此,在 5 K 到 200 K 的范围内,他们的测量基于声学温度测量装置,从而可以将气体中的声速与气体的热力学温度联系起来。然后将获得的结果与连接到 EIT-90 的温度计给出的结果进行比较。 LNE-Cnam 研究工程师 Fernando Sparasci 解释道:“为这些比较和测量玻尔兹曼常数而设立的这项实验已达到相当成熟的水平,我们已将我们的设备出口到世界各地的七个计量实验室,这是一个独特的案例。”与此同时,LNE-Cnam 的物理学家与中国科学院理化所的中国同事在实验室框架内合作